On fundamental aspects of quantum extreme learning machines

被引:0
|
作者
Xiong, Weijie [1 ]
Facelli, Giorgio [1 ]
Sahebi, Mehrad [1 ]
Agnel, Owen [2 ]
Chotibut, Thiparat [3 ]
Thanasilp, Supanut [1 ,3 ]
Holmes, Zoe [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, CH-1015 Lausanne, Switzerland
[2] Univ Oxford, Dept Comp Sci, Oxford, England
[3] Chulalongkorn Univ, Fac Sci, Dept Phys, Chula Intelligent & Complex Syst Lab, Bangkok, Thailand
基金
瑞士国家科学基金会;
关键词
D O I
10.1007/s42484-025-00239-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum extreme learning machines (QELMs) have emerged as a promising framework for quantum machine learning. Their appeal lies in the rich feature map induced by the dynamics of a quantum substrate-the quantum reservoir-and the efficient post-measurement training via linear regression. Here, we study the expressivity of QELMs by decomposing the prediction of QELMs into a Fourier series. We show that the achievable Fourier frequencies are determined by the data encoding scheme, while Fourier coefficients depend on both the reservoir and the measurement. Notably, the expressivity of QELMs is fundamentally limited by the number of Fourier frequencies and the number of observables, while the complexity of the prediction hinges on the reservoir. As a cautionary note on scalability, we identify four sources that can lead to the exponential concentration of the observables as the system size grows (randomness, hardware noise, entanglement, and global measurements) and show how this can turn QELMs into useless input-agnostic oracles. In particular, our result on the reservoir-induced concentration strongly indicates that quantum reservoirs drawn from a highly random ensemble make QELM models unscalable. Our analysis elucidates the potential and fundamental limitations of QELMs and lays the groundwork for systematically exploring quantum reservoir systems for other machine learning tasks.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Potential and limitations of quantum extreme learning machines
    Innocenti, L.
    Lorenzo, S.
    Palmisano, I.
    Ferraro, A.
    Paternostro, M.
    Palma, G. M.
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [2] Potential and limitations of quantum extreme learning machines
    L. Innocenti
    S. Lorenzo
    I. Palmisano
    A. Ferraro
    M. Paternostro
    G. M. Palma
    Communications Physics, 6
  • [3] Opportunities in Quantum Reservoir Computing and Extreme Learning Machines
    Mujal, Pere
    Martinez-Pena, Rodrigo
    Nokkala, Johannes
    Garcia-Beni, Jorge
    Giorgi, Gian Luca
    Soriano, Miguel C.
    Zambrini, Roberta
    ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (08)
  • [4] Extreme Learning Machines
    Cambria, Erik
    Huang, Guang-Bin
    IEEE INTELLIGENT SYSTEMS, 2013, 28 (06) : 30 - 31
  • [5] Extreme learning machines
    MIT Media Laboratory, Singapore
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    IEEE Intell. Syst., 2013, 6 (30-59):
  • [6] Extreme ensemble of extreme learning machines
    Mansoori, Eghbal G.
    Sara, Massar
    STATISTICAL ANALYSIS AND DATA MINING, 2021, 14 (02) : 116 - 128
  • [7] Fundamental aspects of Aharonov-Bohm quantum machines: thermoelectric heat engines and diodes
    Bedkihal, Salil
    Behera, Jayasmita
    Bandyopadhyay, Malay
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (16)
  • [8] Fusion of extreme learning machines
    Zhang, Wen-Bo
    Ji, Hong-Bing
    Zhang, W.-B. (zwbsoul@163.com), 1600, Science Press (35): : 2728 - 2732
  • [9] Applications of Extreme Learning Machines
    Chen, Jim X.
    COMPUTING IN SCIENCE & ENGINEERING, 2019, 21 (05) : 4 - 5
  • [10] Heterogeneous Extreme Learning Machines
    Valdes, Julio J.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1678 - 1685