An analog of Titchmarsh's theorem and Dini Lipschitz theorem for the Mehler-Fock-Clifford transform

被引:0
|
作者
El Bouazizi, Mohammed [1 ]
El Hamma, Mohamed [1 ]
Daher, Radouan [1 ]
机构
[1] Univ Hassan 2, Fac Sci Ain Chock, Lab Math Fondamentales & Appl, BP 5366 Maarif, Casablanca, Morocco
来源
关键词
Mehler-Fock-Clifford transform; Generalized translation operator;
D O I
10.1007/s41478-024-00866-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a generalized dual translation operator, we obtain an analog of Titchmarsh's theorem and the analogu of Dini Lipschitz theorem for the Mehler-Fock-Clifford transform for functions in f is an element of L1(I;x-12dx)boolean AND L2(I;x-12dx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in L<^>1(I;x<^>{-\frac{1}{2}}dx) \cap L<^>2(I;x<^>{-\frac{1}{2}}dx)$$\end{document} where I=]14,+infinity[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=]\frac{1}{4},+\infty [$$\end{document}.
引用
收藏
页码:865 / 876
页数:12
相关论文
共 50 条
  • [41] On Pauli’s Theorem in Clifford Algebras
    S. P. Kuznetsov
    V. V. Mochalov
    V. P. Chuev
    Russian Mathematics, 2019, 63 : 13 - 27
  • [42] Titchmarsh's theorem and some remarks concerning the right-sided quaternion Fourier transform
    Achak, A.
    Bouhlal, A.
    Daher, R.
    Safouane, N.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 599 - 616
  • [43] Beurling's Theorem in the Clifford Algebras
    Tyr, Othman
    Daher, Radouan
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (03)
  • [44] On Clifford's theorem for singular curves
    Franciosi, M.
    Tenni, Elisa
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 225 - 252
  • [45] Titchmarsh’s theorem and some remarks concerning the right-sided quaternion Fourier transform
    A. Achak
    A. Bouhlal
    R. Daher
    N. Safouane
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 599 - 616
  • [46] Clifford’s theorem for coherent systems
    H. Lange
    P. E. Newstead
    Archiv der Mathematik, 2008, 90 : 209 - 216
  • [47] Clifford’s Theorem for Orbit Categories
    Alexander Zimmermann
    Applied Categorical Structures, 2023, 31
  • [48] Clifford's Theorem for Orbit Categories
    Zimmermann, Alexander
    APPLIED CATEGORICAL STRUCTURES, 2023, 31 (02)
  • [49] On Pauli's Theorem in Clifford Algebras
    Kuznetsov, S. P.
    Mochalov, V. V.
    Chuev, V. P.
    RUSSIAN MATHEMATICS, 2019, 63 (11) : 13 - 27
  • [50] Beurling’s Theorem in the Clifford Algebras
    Othman Tyr
    Radouan Daher
    Advances in Applied Clifford Algebras, 2023, 33