An analog of Titchmarsh's theorem and Dini Lipschitz theorem for the Mehler-Fock-Clifford transform

被引:0
|
作者
El Bouazizi, Mohammed [1 ]
El Hamma, Mohamed [1 ]
Daher, Radouan [1 ]
机构
[1] Univ Hassan 2, Fac Sci Ain Chock, Lab Math Fondamentales & Appl, BP 5366 Maarif, Casablanca, Morocco
来源
关键词
Mehler-Fock-Clifford transform; Generalized translation operator;
D O I
10.1007/s41478-024-00866-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a generalized dual translation operator, we obtain an analog of Titchmarsh's theorem and the analogu of Dini Lipschitz theorem for the Mehler-Fock-Clifford transform for functions in f is an element of L1(I;x-12dx)boolean AND L2(I;x-12dx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in L<^>1(I;x<^>{-\frac{1}{2}}dx) \cap L<^>2(I;x<^>{-\frac{1}{2}}dx)$$\end{document} where I=]14,+infinity[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=]\frac{1}{4},+\infty [$$\end{document}.
引用
收藏
页码:865 / 876
页数:12
相关论文
共 50 条