Efficient fault diagnosis in rolling bearings lightweight hybrid model

被引:0
|
作者
Yang, Peng [1 ]
Zhang, Bozheng [1 ]
Zhao, Jianda [1 ]
机构
[1] Tianjin Univ Technol, Comp Sci & Technol, Tianjin 300384, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Bearing fault detection; LSTM; Transformer; Multi-head attention mechanism;
D O I
10.1038/s41598-025-96285-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To address the issue of low efficiency in feature extraction and model training when traditional deep learning methods handle long time-series data, this paper proposes a Time-Series Lightweight Transformer (TSL-Transformer) model. According to the data characteristics of bearing fault diagnosis tasks, the model makes lightweight improvements to the traditional Transformer model, and focuses on adjusting the encoder module (core feature extraction module), introducing multi-head attention mechanism and feedforward neural network to efficiently extract complex features of vibration signals. Considering the rich temporal features present in vibration signals, a Long Short-Term Memory (LSTM) module is introduced in parallel to the encoder module of the improved lightweight Transformer model. This enhancement further strengthens the model's ability to capture temporal features, thereby improving diagnostic accuracy. Experimental results demonstrate that the proposed TSL-Transformer model achieves a fault diagnosis accuracy of 99.2% on the CWRU dataset. Through dimensionality reduction and visualization analysis using the t-SNE method, the effectiveness of different network structures within the proposed TSL-Transformer model is elucidated.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A hybrid method for fault diagnosis of rolling bearings
    He, Yuchen
    Fang, Husheng
    Luo, Jiqing
    Pang, Pengfei
    Yin, Qin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [2] A hybrid deep-learning model for fault diagnosis of rolling bearings
    Xu, Yang
    Li, Zhixiong
    Wang, Shuqing
    Li, Weihua
    Sarkodie-Gyan, Thompson
    Feng, Shizhe
    MEASUREMENT, 2021, 169
  • [3] A New Lightweight Fault Diagnosis Framework Towards Variable Speed Rolling Bearings
    Liu, Guiyi
    Zhang, Chao
    Xu, Shuai
    Zhang, Jing
    Wu, Le
    IEEE ACCESS, 2024, 12 : 70170 - 70183
  • [4] A hybrid deep learning model for fault diagnosis of rolling bearings using raw vibration signals
    Jiang, Liang
    Tang, Jiahui
    Sun, Ning
    Wang, Songlei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)
  • [5] A hybrid deep-learning model for fault diagnosis of rolling bearings in strong noise environments
    Zhang, Ke
    Fan, Caizi
    Zhang, Xiaochen
    Shi, Huaitao
    Li, Songhua
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (06)
  • [6] Hybrid CNN-LSTM model for fault diagnosis of rolling element bearings with operational defects
    Sahu, Devendra
    Dewangan, Ritesh Kumar
    Matharu, Surendra Pal Singh
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2024,
  • [7] An intelligent fault diagnosis method for rolling bearings based on hybrid characteristics
    Lu J.
    Yao T.
    Li S.
    Cui R.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (16): : 79 - 84and176
  • [8] A Survey on Fault Diagnosis of Rolling Bearings
    Peng, Bo
    Bi, Ying
    Xue, Bing
    Zhang, Mengjie
    Wan, Shuting
    ALGORITHMS, 2022, 15 (10)
  • [9] An approach to fault diagnosis of rolling bearings
    Roque, A.A.
    Silva, T.A.N.
    Calado, J.M.F.
    Dias, J.C.Q.
    WSEAS Transactions on Systems and Control, 2009, 4 (04): : 188 - 197
  • [10] Intelligent Fault Diagnosis of Rolling Bearings Using Efficient and Lightweight ResNet Networks Based on an Attention Mechanism (September 2022)
    Chang, Meng
    Yao, Dechen
    Yang, Jianwei
    IEEE SENSORS JOURNAL, 2023, 23 (09) : 9136 - 9145