Existence of solutions for time fractional semilinear parabolic equations in Besov-Morrey spaces

被引:0
|
作者
Oka, Yusuke [1 ]
Zhanpeisov, Erbol [2 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
[2] Okinawa Inst Sci & Technol, 1919-1 Tancha, Onna Son, Okinawa 9040495, Japan
关键词
Caputo derivative; Semilinear heat equation; Besov-Morrey spaces; Cauchy problem; GLOBAL-SOLUTIONS; CAUCHY-PROBLEMS; HEAT-EQUATION; DIFFUSION; NONEXISTENCE;
D O I
10.1007/s00028-024-01025-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for a time fractional semilinear heat equation { C partial derivative(alpha)(t) u = Delta u + |u|(gamma-1)u, x is an element of R-N , t is an element of]0, T [, (P) {u ( x , 0 ) = mu(x), x is an element of R-N , where 0 < alpha < 1, gamma > 1, N is an element of Z 1 and mu(x) belongs to inhomogeneous/homogeneous Besov-Morrey spaces. The fractional derivative C partial derivative(alpha)(t)u is interpreted in the Caputo sense. We present sufficient conditions for the existence of local/global-in-time solutions to problem (P). Our results cover all existing results in the literature and can be applied to a large class of initial data.
引用
收藏
页数:26
相关论文
共 50 条