On the vertex degree function of graphsOn the vertex degree function of graphsK. C. Das

被引:0
|
作者
Kinkar Chandra Das [1 ]
机构
[1] Sungkyunkwan University,Department of Mathematics
关键词
Vertex degree function index; Tree; Chemical tree; Connected graph; Nordhaus–Gaddum-type result; 05C07; 05C09; 05C92;
D O I
10.1007/s40314-025-03161-7
中图分类号
学科分类号
摘要
The vertex-degree function index, denoted as Hf(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{f}(G)$$\end{document}, is defined for a graph G with vertex set V(G) as Hf(G)=∑v∈V(G)f(d(v))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{f}(G)=\sum _{v\in V(G)}f(d(v))$$\end{document} where f(x) is a function defined on non-negative real numbers, and dG(vi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_G(v_i)$$\end{document} represents the degree of the vertex vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document} in G. In this paper, we investigate the extremal graphs that maximize or minimize the vertex-degree function index within specific classes of graphs, namely n-vertex quasi-trees, unicyclic graphs, and bicyclic graphs. We identify the graphs that achieve these extremal values of Hf(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{f}(G)$$\end{document} and provide explicit characterizations of these extremal graphs. Additionally, we establish a lower bound on Hf(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{f}(G)$$\end{document} that depends on the number of vertices n and the clique number ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}. The extremal graphs that reach this lower bound are also characterized. Finally, we derive an upper bound for Hf(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{f}(G)$$\end{document}, which is expressed in terms of n and the vertex (or edge) connectivity of the graphs. We also identify the specific graphs that attain this upper bound. This study provides a comprehensive analysis of the vertex-degree function index Hf(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{f}(G)$$\end{document} across various graph classes and contributes to the understanding of the structural properties of graphs that influence this index.
引用
收藏
相关论文
共 50 条
  • [1] On the vertex degree function of graphs
    Das, Kinkar Chandra
    Computational and Applied Mathematics, 2025, 44 (04)
  • [2] Vertex-degree function index on tournaments
    Bermudo, Sergio
    Cruz, Roberto
    Rada, Juan
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023,
  • [3] VERTEX DEGREE IN THE INTERVAL GRAPH OF A RANDOM BOOLEAN FUNCTION
    Daubner, J.
    Toman, E.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2010, 79 (02): : 151 - 164
  • [4] Extremal Graphs to Vertex Degree Function Index for Convex Functions
    He, Dong
    Ji, Zhen
    Yang, Chenxu
    Das, Kinkar Chandra
    AXIOMS, 2023, 12 (01)
  • [5] On Making a Distinguished Vertex of Minimum Degree by Vertex Deletion
    Betzler, Nadja
    Bodlaender, Hans L.
    Bredereck, Robert
    Niedermeier, Rolf
    Uhlmann, Johannes
    ALGORITHMICA, 2014, 68 (03) : 715 - 738
  • [6] On Making a Distinguished Vertex of Minimum Degree by Vertex Deletion
    Nadja Betzler
    Hans L. Bodlaender
    Robert Bredereck
    Rolf Niedermeier
    Johannes Uhlmann
    Algorithmica, 2014, 68 : 715 - 738
  • [7] On Making a Distinguished Vertex Minimum Degree by Vertex Deletion
    Betzler, Nadja
    Bredereck, Robert
    Niedermeier, Rolf
    Uhlmann, Johannes
    SOFSEM 2011: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2011, 6543 : 123 - 134
  • [8] Extremal vertex-degree function index with given order and dissociation number
    Huang, Jing
    Zhang, Huihui
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 142 - 152
  • [9] Analysis of Vertex Degree Distributions in Preferential Attachment Graphs with Power Weight Function
    Zadorozhnyi, V. N.
    Yudin, E. B.
    2018 12TH INTERNATIONAL IEEE SCIENTIFIC AND TECHNICAL CONFERENCE ON DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES (DYNAMICS), 2018,
  • [10] Graphs with Minimum Vertex-Degree Function-Index for Convex Functions
    Hu, Zhoukun
    Li, Xueliang
    Peng, Danni
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 88 (03) : 521 - 533