Dynamic performance optimization of a planar mechanism with cam clearance joint based on non-uniform rational B-spline and reinforcement learning

被引:0
|
作者
Mao, Jiangmin [1 ,2 ]
Zhu, Yingdan [1 ,2 ]
Yan, Chun [1 ]
Yue, Lingyu [1 ]
Chen, Gang [1 ]
Xue, Sheng [3 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Key Lab Robot & Intelligent Mfg Equi, Ningbo 315201, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Anhui Univ Sci & Technol, Joint Natl Local Engn Res Ctr Safe & Precise Coal, Huainan 232001, Peoples R China
关键词
Cam mechanism; Clearance joint; Performance optimization; NURBS; Reinforcement learning; SLIDER-CRANK MECHANISM; REVOLUTE JOINTS; DESIGN; SYSTEM; VIBRATIONS; FOLLOWER; CONTACT;
D O I
10.1007/s11071-024-10533-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The collision forces generated by clearance in the cam pair lead to poor dynamic performance and undesirable vibrations of cam mechanisms. Existing approaches improve the dynamic characteristics through optimizing the contact parameters of the cam joint elements. However, adjusting these parameters may exceed the limits of a specified material since the material properties vary discretely from one to another. To fill this gap, a dynamic characteristics optimization method using non-uniform rational B-spline (NURBS) and reiforcement learning (RL) is proposed for cam mechanisms with clearance joints. A NURBS curve is used to reconstruct the cam profile whose shape can be locally changed by the weighting factors of corresponding control points. Then, the nonlinear dynamics equations of the cam mechanism with clearance joint are established to solve the output acceleration ac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a}_{c}$$\end{document} and the joint's contact force Fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F}_{c}$$\end{document}. Finally, a RL agent is trained to learn the optimal policy for the weighting factors to minimize the mean vibrations of ac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a}_{c}$$\end{document} and Fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F}_{c}$$\end{document}. In addition, dynamics optimization of a beat-up mechanism considering cam clearance joint is conducted to validate the adaptability and reliability of the proposed approach. The results show that the mean vibrations of ac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a}_{c}$$\end{document} and Fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F}_{c}$$\end{document} are respectively decreased by 46.7% and 44.6% after optimization. It indicates that optimizing local features of a cam profile by adjusting weighting factors assigned to the control points effectively enhances the contact state between the cam and roller, thereby improving the dynamic performance of the cam mechanism.
引用
收藏
页码:7779 / 7801
页数:23
相关论文
共 50 条
  • [1] THE CIRCLE AS A NON-UNIFORM RATIONAL B-SPLINE CURVE
    Schindler, Frank
    APLIMAT 2005 - 4TH INTERNATIONAL CONFERENCE, PT II, 2005, : 357 - 360
  • [2] Approximating the helix with Non-Uniform Rational B-Spline curves
    Zheng, GQ
    Yang, CG
    Sun, JG
    FIFTH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS, VOLS 1 AND 2, 1997, : 427 - 430
  • [3] A general framework for motion design of the follower in cam mechanisms by using non-uniform rational B-spline
    Nguyen, T. T. N.
    Kurtenbach, S.
    Huesing, M.
    Corves, B.
    MECHANISM AND MACHINE THEORY, 2019, 137 : 374 - 385
  • [4] An Approach to Representing Heterogeneous Non-Uniform Rational B-Spline Objects
    臧婷
    徐安平
    Transactions of Tianjin University, 2011, 17 (04) : 275 - 279
  • [5] An approach to representing heterogeneous non-uniform rational B-spline objects
    Zang T.
    Xu A.
    Transactions of Tianjin University, 2011, 17 (4) : 275 - 279
  • [6] On the limits of non-uniform rational B-spline surfaces with varying weights
    Zhang, Yue
    Zhu, Chun-Gang
    Guo, Qing-Jie
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (05)
  • [7] An Approach to Representing Heterogeneous Non-Uniform Rational B-Spline Objects
    臧婷
    徐安平
    Transactions of Tianjin University, 2011, (04) : 275 - 279
  • [8] On the Bertrand Pairs of Open Non-Uniform Rational B-Spline Curves
    Incesu, Muhsin
    Evren, Sara Yilmaz
    Gursoy, Osman
    MATHEMATICAL ANALYSIS AND APPLICATIONS, MAA 2020, 2021, 381 : 167 - 184
  • [9] Adapting non-uniform rational B-spline fitting approaches to metamodeling
    Turner, Cameron J.
    Crawford, Richard H.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2005, VOL 3, PTS A AND B, 2005, : 165 - 177
  • [10] Interpolation for non-uniform rational B-spline surface based on STEP-NC
    School of Mechatronics Engineering, Harbin Engineering University, Harbin 150001, China
    不详
    Jisuanji Jicheng Zhizao Xitong, 2008, 6 (1136-1141): : 1136 - 1141