Homogenization of Non-Homogeneous Incompressible Navier–Stokes System in Critically Perforated DomainsHomogenization of Non-Homogeneous Incompressible Navier–Stokes SystemJ. Pan

被引:0
|
作者
Jiaojiao Pan [1 ]
机构
[1] Nanjing University,School of Mathematics
关键词
Homogenization; Brinkman’s law; Navier–Stokes system; Perforated domains; 35B27; 76M50; 76N06;
D O I
10.1007/s00021-025-00931-5
中图分类号
学科分类号
摘要
In this paper, we study the homogenization of 3D non-homogeneous incompressible Navier–Stokes system in perforated domains with holes of critical size. Under very mild assumptions concerning the shape of the obstacles and their mutual distance, we show that when ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}, the velocity and density converge to a solution of the non-homogeneous incompressible Navier–Stokes system with a friction term of Brinkman type.
引用
收藏
相关论文
共 50 条
  • [1] Local controllability to trajectories for non-homogeneous incompressible Navier-Stokes equations
    Badra, Mehdi
    Ervedoza, Sylvain
    Guerrero, Sergio
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02): : 529 - 574
  • [2] Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations
    Boyer, Franck
    Fabrie, Pierre
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 7 (02): : 219 - 250
  • [3] Weak and Strong Solutions for the Stokes Approximation of Non-homogeneous Incompressible Navier-Stokes Equations
    Xiao-jing Cai~1 Quan-sen Jiu~(1*) Chun-yan Xue~(1
    Acta Mathematicae Applicatae Sinica, 2007, (04) : 637 - 650
  • [4] Weak and Strong Solutions for the Stokes Approximation of Non-homogeneous Incompressible Navier-Stokes Equations
    Xiao-jing Cai
    Quan-sen Jiu*
    Chun-yan Xue
    Acta Mathematicae Applicatae Sinica, English Series, 2007, 23
  • [5] Weak and strong solutions for the stokes approximation of non-homogeneous incompressible Navier-Stokes equations
    Cai, Xiao-jing
    Jiu, Quan-sen
    Xue, Chun-yan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (04): : 637 - 650
  • [6] Boundary integral analysis for non-homogeneous, incompressible Stokes flows
    L. J. Gray
    Jas Jakowski
    M. N. J. Moore
    Wenjing Ye
    Advances in Computational Mathematics, 2019, 45 : 1729 - 1734
  • [7] Boundary integral analysis for non-homogeneous, incompressible Stokes flows
    Gray, L. J.
    Jakowski, Jas
    Moore, M. N. J.
    Ye, Wenjing
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (03) : 1729 - 1734
  • [8] A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems
    Angot, Philippe
    Caltagirone, Jean-Paul
    Fabrie, Pierre
    APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 1681 - 1688
  • [9] Homogenization of Evolutionary Incompressible Navier–Stokes System in Perforated Domains
    Yong Lu
    Peikang Yang
    Journal of Mathematical Fluid Mechanics, 2023, 25
  • [10] Generalized Navier-Stokes Equations with Non-Homogeneous Boundary Conditions
    Baranovskii, Evgenii S.
    Artemov, Mikhail A.
    FRACTAL AND FRACTIONAL, 2022, 6 (07)