Ground Resolved Distance Estimation of Sentinel-2 Imagery Using Edge-based Scene-Driven Approach

被引:1
|
作者
Javan, Farzaneh Dadrass [1 ]
Samadzadegan, Farhad [2 ]
Toosi, Ahmad [2 ]
Schneider, Mathias [3 ]
Persello, Claudio [1 ]
机构
[1] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, Enschede, Netherlands
[2] Univ Tehran, Sch Surveying & Geospatial Engn, Coll Engn, Tehran, Iran
[3] Deutsch Zent Luft und Raumfahrt DLR, Inst Method Fernerkundung IMF, D-82234 Cologne, Germany
关键词
Earth observation; Satellite imagery; Sentinel-2; European Space Agency (ESA); Ground sampling distance (GSD); Ground resolved distance (GRD); SPATIAL-RESOLUTION; MISSION;
D O I
10.1007/s41064-024-00330-x
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Sentinel-2 satellite provides freely accessible multispectral images used in various remote sensing (RS) applications, where spatial resolution is crucial. The Ground Sampling Distance (GSD) for Sentinel's visible and near-infrared (VNIR) bands is specified at 10 meters, but it may not accurately reflect ground resolution due to environmental effects. As a result, Ground Resolved Distance (GRD) serves as an alternative measure for actual resolution, but information about Sentinel GRD is lacking, calibration targets are not always available, and GRD may vary across different tiles. This paper estimates Sentinel's GRD using a scene-driven approach that analyzes the edges of natural targets, reducing the challenges associated with artificial targets. The method involves selecting suitable natural targets based on their geometric and spectral characteristics, sub-pixel edge extraction, estimating the Edge Spread Function (ESF), generating the Line Spread Function (LSF), and calculating the Full-width at Half Maximum (FWHM). Two tiles of Sentinel-2 imagery from the Shadnagar Calibration Facility, India, and Baotou, China, were analyzed. The analysis of 40 natural targets revealed average GRD values of 12.65 m, 12.40 m, 12.49 m, and 12.58 m for the red, green, blue, and NIR bands, respectively, aligning closely with results from calibration targets. The method demonstrated high accuracy and precision with a total RMSE of approximately 0.77 m and a total standard deviation of 0.19 m, respectively.
引用
收藏
页码:131 / 152
页数:22
相关论文
共 50 条
  • [1] Forage Biomass Estimation Using Sentinel-2 Imagery at High Latitudes
    Peng, Junxiang
    Zeiner, Niklas
    Parsons, David
    Feret, Jean-Baptiste
    Soderstrom, Mats
    Morel, Julien
    REMOTE SENSING, 2023, 15 (09)
  • [2] Wheat yield estimation using fused Cubesat and Sentinel-2 imagery
    Sadeh, Y.
    Zhu, X.
    Dunkerley, D.
    Walker, J. P.
    Chenu, K.
    PRECISION AGRICULTURE'21, 2021, : 575 - 582
  • [3] Mahalanobis distance based accuracy prediction models for Sentinel-2 Image Scene Classification
    Raiyani, Kashyap
    Goncalves, Teresa
    Rato, Luis
    Barao, Miguel
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (15-16) : 6001 - 6026
  • [4] DEEP LEARNING - A NEW APPROACH FOR MULTI-LABEL SCENE CLASSIFICATION IN PLANETSCOPE AND SENTINEL-2 IMAGERY
    Shendryk, Iurii
    Rist, Yannik
    Lucas, Rob
    Ticehurst, Catherine
    Thorburn, Peter
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1116 - 1119
  • [5] Unsupervised classification based approach for coastline extraction from Sentinel-2 imagery
    Alcaras, Emanuele
    Amoroso, Pier Paolo
    Baiocchi, Valerio
    Falchi, Ugo
    Parente, Claudio
    2021 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR THE SEA (METROSEA 2021), 2021, : 423 - 427
  • [6] IMPLEMENTATION OF A SENTINEL-2 BASED EXPLORATORY WORKFLOW FOR THE ESTIMATION OF ABOVE GROUND BIOMASS
    Molisse, Giulia
    Emin, Dzhaner
    Costa, Hugo
    2022 IEEE MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2022, : 74 - 77
  • [7] Greenhouse Mapping using Object Based Classification and Sentinel-2 Satellite Imagery
    Balcik, Filiz Bektas
    Senel, Gizem
    Goksel, Cigdem
    2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2019,
  • [8] A deep learning approach for automatic mapping of poplar plantations using Sentinel-2 imagery
    D'Amico, G.
    Francini, S.
    Giannetti, F.
    Vangi, E.
    Travaglini, D.
    Chianucci, F.
    Mattioli, W.
    Grotti, M.
    Puletti, N.
    Corona, P.
    Chirici, G.
    GISCIENCE & REMOTE SENSING, 2021, 58 (08) : 1352 - 1368
  • [9] ESTIMATION OF EVAPOTRANSPIRATION OF A VINEYARD OF TABLE GRAPES (Vitis vinifera) USING SENTINEL-2 SATELLITE IMAGERY
    Manuel Salvador-Castillo, Jose
    Alejandro Bolanos-Gonzalez, Martin
    Cesar Rodriguez, Julio
    Palacios-Velez, Enrique
    Alberto Palacios-Sanchez, Luis
    Watts, Christopher
    Lizarraga-Celaya, Carlos
    Ortega-Farias, Samuel
    Er-Raki, Salah
    AGROCIENCIA, 2021, 55 (05) : 369 - 387
  • [10] Sugarcane yield estimation in Thailand at multiple scales using the integration of UAV and Sentinel-2 imagery
    Som-ard, Jaturong
    Immitzer, Markus
    Vuolo, Francesco
    Atzberger, Clement
    PRECISION AGRICULTURE, 2024, 25 (03) : 1581 - 1608