Appraisal of the physio-biochemical efficacy of exogenously applied natural and synthetic sources of plant growth stimulants in modulating drought stress tolerance in maize (Zea mays L.)

被引:0
|
作者
Ahmad, Abrar [1 ]
Akram, Nudrat Aisha [1 ]
Ashraf, Muhammad [2 ]
机构
[1] Govt Coll Univ, Dept Bot, Faisalabad 38000, Pakistan
[2] Univ Lahore, Inst Mol Biol & Biotechnol, Lahore, Pakistan
关键词
Drought tolerance; Riboflavin; Thiamin; Natural plant growth stimulant; Moringa leaf extract; Maize; BRASSICA-NAPUS L; OXIDATIVE DEFENSE SYSTEM; ABIOTIC STRESS; ASCORBIC-ACID; GLYCINE BETAINE; PROLINE; ATTRIBUTES; METABOLISM; THIAMINE; YIELD;
D O I
10.1007/s11738-024-03758-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phytoextracts as a cheap source of growth promoters as well as synthetic chemicals are being widely used these days to treat plants subjected to stress conditions. To compare the effects of natural growth regulators and synthetic ones, a pot experiment was conducted using natural [moringa leaf extract (MLE)] and synthetic (vitamins B1 and B2) sources to appraise the mitigating of drought-induced adverse effects on maize (Zea mays L.) plants. Seeds of both differentials stress tolerant maize cultivars (YH-1898 and Sahiwal Gold) were primed with natural (MLE), synthetic (thiamin and riboflavin), and their combination (MLE, thiamin, and riboflavin) and subjected to 100% field capacity [F.C. (control)] and 60% F.C. (drought) conditions. Drought stress (60% F.C.) significantly decreased plant biomass and total soluble proteins (TSP), whereas no significant alteration was observed in chlorophyll contents. However, in contrast, it improved glycine betaine (GB), proline, hydrogen peroxide (H2O2), malondialdehyde (MDA), total phenolics, and ascorbic acid as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) enzymes in both maize cultivars. Priming seeds with different sources enhanced growth attributes, chlorophyll pigments, osmolyte concentration, total phenolics, ascorbic acid, and the activities of reactive oxygen species (ROS) scavenging enzymes (SOD, POD, and CAT), but it reduced the accumulation of H2O2 and MDA. Overall, a natural source, MLE as a plant growth regulator, remarkably reduced the adverse effects of drought stress and enhanced the growth of maize cultivars, whereas riboflavin among the synthetic PGRs was more effective in upregulating the oxidative defense and osmoprotectant accumulation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ASSESSMENT OF PHYSIO-BIOCHEMICAL INDICATORS FOR DROUGHT TOLERANCE IN DIFFERENT CULTIVARS OF MAIZE (ZEA MAYS L.)
    Shafiq, Sidra
    Akram, Nudrat Aisha
    Ashraf, Muhammad
    PAKISTAN JOURNAL OF BOTANY, 2019, 51 (04) : 1241 - 1247
  • [2] Salicylic Acid Improves Boron Toxicity Tolerance by Modulating the Physio-Biochemical Characteristics of Maize (Zea mays L.) at an Early Growth Stage
    Nawaz, Muhammad
    Ishaq, Sabtain
    Ishaq, Hasnain
    Khan, Naeem
    Iqbal, Naeem
    Ali, Shafaqat
    Rizwan, Muhammad
    Alsahli, Abdulaziz Abdullah
    Alyemeni, Mohammed Nasser
    AGRONOMY-BASEL, 2020, 10 (12):
  • [3] Copper Oxide Nanoparticles Induced Growth and Physio-Biochemical Changes in Maize (Zea mays L.) in Saline Soil
    Shafiq, Hina
    Shani, Muhammad Yousaf
    Ashraf, Muhammad Yasin
    De Mastro, Francesco
    Cocozza, Claudio
    Abbas, Shahid
    Ali, Naila
    Tahir, Aqsa
    Zaib-un-Nisa
    Iqbal, Muhammad
    Khan, Zafran
    Gul, Nimra
    Brunetti, Gennaro
    PLANTS-BASEL, 2024, 13 (08):
  • [4] Deciphering the role of exogenously-applied vanillic acid in regulating drought stress tolerance in pea ( Pisum sativum L.): Key growth and physio-biochemical attributes
    Rahman, Abdul
    Akram, Nudrat Aisha
    Ashraf, Muhammad
    Alsahli, Abdulaziz Abdullah
    Ahmad, Parvaiz
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2024, 36 (11)
  • [5] Exogenous naphthaleneacetic acid (NAA) mitigated the alkaline stress changes in the growth and physio-biochemical performance of maize (Zea mays L.) seedlings
    Iqbal, Babar
    Jalal, Arshad
    Ahmad, Naveed
    Okla, Mohammad K.
    Abd Elgawad, Hamada
    El-Tayeb, Mohamed A.
    Gaafar, Abdel-Rhman Z.
    Li, Guanlin
    Du, Daolin
    ACTA PHYSIOLOGIAE PLANTARUM, 2025, 47 (02)
  • [6] Rapid method of screening for drought stress tolerance in maize (Zea mays L.)
    Kumar, Bhupender
    Kumar, Krishan
    Jat, Shankar Lal
    Srivastava, Shraddha
    Tiwari, Tanu
    Kumar, Sonu
    Meenakshi
    Pradhan, Hans Raj
    Kumar, Brijesh
    Chaturvedi, Garima
    Jha, Abhishek Kumar
    Rakshit, Sujay
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2020, 80 (01) : 16 - 25
  • [7] Maize (Zea mays L.) landraces classified by drought stress tolerance at the seedling stage
    Gonzalez-Hernandez, Victor A.
    Lugo-Cruz, Eleazar
    Mendoza-Onofre, Leopoldo E.
    Santacruz-Varela, Amalio
    Alejandra Gutierrez-Espinosa, Ma
    Zavala-Garcia, Francisco
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2021, 33 (01): : 29 - 36
  • [8] Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought
    Chugh, Vishal
    Kaur, Narinder
    Gupta, Anil K.
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2011, 48 (01): : 47 - 53
  • [9] Selection of various synthetic Maize (Zea mays L.) genotypes on drought stress condition
    Farid, M.
    Musa, Y.
    Nasaruddin
    Ridwan, I.
    1ST INTERNATIONAL CONFERENCE ON GLOBAL ISSUE FOR INFRASTRUCTURE, ENVIRONMENT & SOCIO-ECONOMIC DEVELOPMENT, 2019, 235
  • [10] Silicon-Mediated Growth, Physiological, Biochemical and Root Alterations to Confer Drought and Nickel Stress Tolerance in Maize (Zea mays L.)
    Humaira Ishaq
    Ejaz Ahmad Waraich
    Saddam Hussain
    Muhammad Ahmad
    Zahoor Ahmad
    Silicon, 2023, 15 : 6579 - 6589