On the existence-uniqueness and exponential estimate for solutions to stochastic functional differential equations driven by G-Lévy process

被引:0
|
作者
Ullah, Rahman [1 ,3 ]
Faizullah, Faiz [2 ]
Ali, Ihteram [3 ]
Farooq, Muhammad [2 ]
Rana, M. A. [4 ]
Awwad, Fuad A. [5 ]
机构
[1] Hubei Polytech Univ, Sch Math & Phys, Huangshi 435003, Peoples R China
[2] Natl Univ Sci & Technol NUST, Coll E&ME, Dept BS&H, Islamabad 44000, Pakistan
[3] Women Univ Swabi, Dept Math & Stat, Swabi 23430, Pakistan
[4] Riphah Int Univ Islamabad, Dept Math & Stat, Islamabad, Pakistan
[5] King Saud Univ, Coll Business Adm, Dept Quantitat Anal, Riyadh 11587, Saudi Arabia
来源
关键词
G-L & eacute; vy process; Stochastic functional differential equations; Existence-uniqueness theorem; Error estimation; Exponential estimate; G-BROWNIAN MOTION; STABILITY;
D O I
10.1186/s13662-024-03856-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence-uniqueness theory for solutions to stochastic dynamic systems is always a significant theme and has received tremendous attention. This article aims to study the theory for stochastic functional differential equations (SFDEs) driven by the G-L & eacute;vy process. It derives the existence-uniqueness theorem for solutions to SFDEs driven by the G-L & eacute;vy process. Moreover, it shows the error estimation between the exact solution x(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(t)$\end{document} and Picard approximate solutions xn(t),n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x<^>{n}(t), n\geq 1$\end{document}. Ultimately, the exponential estimate has been derived.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] The existence-uniqueness and exponential estimate of solutions for stochastic functional differential equations driven by G-Brownian motion
    Faizullah, Faiz
    Zhu, Quanxin
    Ullah, Rahman
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) : 1639 - 1650
  • [2] Exponential Stability of Solutions to Stochastic Differential Equations Driven by G-Lévy Process
    Bingjun Wang
    Hongjun Gao
    Applied Mathematics & Optimization, 2021, 83 : 1191 - 1218
  • [3] Existence of solution for stochastic differential equations driven by G-Lévy process with discontinuous coefficients
    Bingjun Wang
    Mingxia Yuan
    Advances in Difference Equations, 2017
  • [4] Backward stochastic differential equations driven by G-Lévy process with double reflexions
    Gueye, Cheikh
    Aidara, Sadibou
    Sow, Ahmadou Bamba
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2025, 33 (01) : 1 - 22
  • [5] Further results on existence-uniqueness for stochastic functional differential equations
    XU DaoYi
    WANG XiaoHu
    YANG ZhiGuo
    ScienceChina(Mathematics), 2013, 56 (06) : 1167 - 1178
  • [6] Further results on existence-uniqueness for stochastic functional differential equations
    Xu DaoYi
    Wang XiaoHu
    Yang ZhiGuo
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (06) : 1169 - 1180
  • [7] Further results on existence-uniqueness for stochastic functional differential equations
    DaoYi Xu
    XiaoHu Wang
    ZhiGuo Yang
    Science China Mathematics, 2013, 56 : 1169 - 1180
  • [8] Existence-uniqueness and continuation theorems for stochastic functional differential equations
    Xu, Daoyi
    Yang, Zhiguo
    Huang, Yumei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (06) : 1681 - 1703
  • [9] EXISTENCE-UNIQUENESS OF THE SOLUTION FOR NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS
    Teng, Lingying
    Xiang, Li
    Xu, Daoyi
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (02) : 619 - 644
  • [10] The existence and uniqueness of mild solutions to stochastic differential equations with Lévy noise
    Lasheng Wang
    Advances in Difference Equations, 2017