New soliton solutions of (2+1)-dimensional Bogoyavlensky-Konopelchenko equation via two integration techniques

被引:0
|
作者
Faisal, Khalida [1 ]
Maqbool, Khadija [2 ]
机构
[1] Forman Christian Coll Univ, Dept Math, Lahore, Pakistan
[2] Int Islamic Univ Islamabad, Dept Math & Stat, Islamabad, Pakistan
关键词
the exp(-Phi(eta))-expansion method; the modified Kudryashov method; exact solutions; FOKAS-LENELLS EQUATION; WAVE SOLUTIONS; NONLINEARITY; FIBER;
D O I
10.1007/s11766-025-4527-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we investigate a variety of exact soliton solutions of general (2 + 1)-dimensional Bogoyavlensky-Konopelchenko equation via the exp(-Phi(eta))-expansion method and modified Kudryashov method. The exact solutions are characterized in the form of hyperbolic, trigonometric and rational function solutions using exp(-Phi(eta))-expansion method, whereas the solution in the form of hyperbolic function expression is obtained by the modified Kudryashov method. These exact solutions also include kink, bright, dark, singular and periodic soliton solutions. The graphical interpretation of the exact solutions is addressed for specific choices of the parameters appearing in the solutions.
引用
收藏
页码:169 / 181
页数:13
相关论文
共 50 条
  • [1] New soliton solutions of (2+1)-dimensional Bogoyavlensky–Konopelchenko equation via two integration techniques
    Khalida Faisal
    Khadija Maqbool
    Applied Mathematics:A Journal of Chinese Universities, 2025, 40 (01) : 169 - 181
  • [2] Painleve integrability and new soliton solutions for (2+1)-dimensional Bogoyavlensky-Konopelchenko equation and generalized Bogoyavlensky-Konopelchenko equation with variable coefficients in fluid mechanics
    Singh, S.
    Ray, S. Saha
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (14):
  • [3] Quasi-periodic wave solutions, soliton solutions, and integrability to a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation
    Yan, Hui
    Tian, Shou-Fu
    Feng, Lian-Li
    Zhang, Tian-Tian
    WAVES IN RANDOM AND COMPLEX MEDIA, 2016, 26 (04) : 444 - 457
  • [4] Conservation laws and exact solutions of a generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation
    Podilea, T. J.
    Muatjetjejaa, B. B.
    Ademc, A. R.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 709 - 718
  • [5] Lump-type solutions and lump solutions for the (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation
    Li, Qiang
    Chaolu, Temuer
    Wang, Yun-Hu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (08) : 2077 - 2085
  • [6] Some more variety of analytical solutions to (2+1)-Bogoyavlensky-Konopelchenko equation
    Kumar, Raj
    Pandey, Kripa Shankar
    Yadav, Shiv Kumar
    Kumar, Avneesh
    PHYSICA SCRIPTA, 2024, 99 (04)
  • [7] The dynamical behavior of mixed-type soliton solutions described by (2+1)-dimensional Bogoyavlensky-Konopelchenko equation with variable coefficients
    Osman, M. S.
    Machado, J. A. T.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2018, 32 (11) : 1457 - 1464
  • [8] Some novel fusion and fission wave solutions in the (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation
    Li, Yuhan
    An, Hongli
    Zhu, Haixing
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (12):
  • [9] Solitons for a (2+1)-dimensional variable-coefficient Bogoyavlensky-Konopelchenko equation in a fluid
    Wang, Ya-Le
    Gao, Yi-Tian
    Jia, Shu-Liang
    Deng, Gao-Fu
    Hu, Wen-Qiang
    MODERN PHYSICS LETTERS B, 2017, 31 (25):
  • [10] Resonance Y-type soliton and new hybrid solutions generated by velocity resonance for a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation in a fluid
    Ma, Hongcai
    Chen, Xiaoyu
    Deng, Aiping
    NONLINEAR DYNAMICS, 2023, 111 (08) : 7599 - 7617