Complexity measures in trees: a comparative investigation of Szeged and Wiener indices

被引:0
|
作者
Ghorbani, Modjtaba [1 ]
Vaziri, Zahra [1 ]
Dehmer, Matthias [2 ,3 ,4 ,5 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Fac Sci, Dept Math, Tehran 16785163, Iran
[2] Swiss Distance Univ Appl Sci, Dept Comp Sci, CH-3900 Brig, Switzerland
[3] Tyrolean Private Univ UMIT, Dept Biomed Comp Sci & Mechatron, TIROL, A-6060 Hall In Tirol, Austria
[4] Nankai Univ, Coll Artificial Intelligence, Tianjin 300071, Peoples R China
[5] AKAD Univ, Sch Engn & Technol, Heilbronner Str 86, D-70191 Stuttgart, Germany
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2025年 / 44卷 / 04期
关键词
Szeged complexity; Wiener complexity; Tree; DIMENSION; DISTANCE; GRAPHS;
D O I
10.1007/s40314-025-03159-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of graph complexity has led to a deeper understanding of the structures of graphs. This paper presents new findings on the Szeged complexity of graphs. Specifically, we prove that for bipartite graphs on n vertices, the upper bound of Szeged complexity is & LeftFloor;n2 & RightFloor;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor \frac{n}{2} \rfloor $$\end{document}. Moreover, we establish that the lower bound of Szeged complexity of a tree T is the radius of T. Furthermore, we characterize trees with Szeged complexity three and determine their Wiener complexity.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A comparative study of the Wiener, Schultz and Szeged indices of cycloalkanes
    Institute of Chemical Sciences, Vigyan Bhawan, Indore, India
    不详
    不详
    不详
    不详
    不详
    不详
    J. Serb. Chem. Soc., 3 (235-239):
  • [2] A Congruence Relation for Wiener and Szeged Indices
    Gutman, Ivan
    Xu, Kexiang
    Liu, Muhuo
    FILOMAT, 2015, 29 (05) : 1081 - 1083
  • [3] A comparative QSAR study using Wiener, Szeged, and molecular connectivity indices
    Mandloi, M
    Sikarwar, A
    Sapre, NS
    Karmarkar, S
    Khadikar, PV
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (01): : 57 - 62
  • [4] The Szeged and Wiener Indices of Line Graphs
    Dobrynin, Andrey A.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2018, 79 (03) : 743 - 756
  • [5] On the differences between Szeged and Wiener indices of graphs
    Nadjafi-Arani, M. J.
    Khodashenas, H.
    Ashrafi, A. R.
    DISCRETE MATHEMATICS, 2011, 311 (20) : 2233 - 2237
  • [6] The Wiener, Szeged, and PI Indices of a Dendrimer Nanostar
    Khalifeh, M. H.
    Darafsheh, M. R.
    Jolany, H.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2011, 8 (02) : 220 - 223
  • [7] Relation between Wiener, Szeged and detour indices
    Azimi, N.
    Roumena, M.
    Ghorbani, M.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 5 : S45 - S51
  • [8] On Wiener and Terminal Wiener Indices of Trees
    Chen, Ya-Hong
    Zhang, Xiao-Dong
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 70 (02) : 591 - 602
  • [9] Relations between Wiener and Szeged indices of monocyclic molecules
    Gutman, I
    Popovic, L
    Khadikar, PV
    Karmarkar, S
    Joshi, S
    Mandloi, M
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 1997, (35) : 91 - 103
  • [10] ON A RELATION BETWEEN SZEGED AND WIENER INDICES OF BIPARTITE GRAPHS
    Chen, L.
    Li, X.
    Liu, M.
    Gutman, I.
    TRANSACTIONS ON COMBINATORICS, 2012, 1 (04) : 43 - 49