Braided Hopf algebras and gauge transformations

被引:0
|
作者
Aschieri, Paolo [1 ,2 ]
Landi, Giovanni [3 ,4 ]
Pagani, Chiara [3 ,5 ,6 ]
机构
[1] Univ Piemonte Orientale, Dipartimento Sci Innovaz Tecnolog, Viale T Michel 11, I-15121 Alessandria, Italy
[2] INFN Torino, Via P Giuria 1, I-10125 Turin, Italy
[3] Univ Trieste, Matemat, Via A Valerio 12-1, I-34127 Trieste, Italy
[4] INFN, Sez Trieste, Trieste, Italy
[5] Univ Studi Napoli Federico II, Dipartimento Matemat & Applicazioni, Via Cintia 21, I-80126 Naples, Italy
[6] INFN Napoli, Naples, Italy
关键词
Noncommutative gauge transformations; Braided Lie algebras; Braided derivations; Hopf-Galois extensions; NONCOMMUTATIVE INSTANTONS; MODULI SPACES; QUANTUM; CONNECTIONS;
D O I
10.1007/s11040-024-09492-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study infinitesimal gauge transformations of K-equivariant noncommutative principal bundles, for K a triangular Hopf algebra. They form a Lie algebra of derivations in the category of K-modules. We study Drinfeld twist deformations of these infinitesimal gauge transformations. We give several examples from abelian and Jordanian twist deformations. These include the quantum Lie algebra of gauge transformations of the instanton bundle and of the orthogonal bundle on the quantum sphere S theta 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>4_\theta $$\end{document}.
引用
收藏
页数:51
相关论文
共 50 条
  • [1] Braided Hopf Algebras and Gauge Transformations II: *-Structures and Examples
    Aschieri, Paolo
    Landi, Giovanni
    Pagani, Chiara
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2023, 26 (02)
  • [2] Braided Hopf Algebras
    Kharchenko, Vladislav
    QUANTUM LIE THEORY: A MULTILINEAR APPROACH, 2015, 2150 : 199 - 244
  • [3] Generalized braided Hopf algebras
    LU Zhong-jian FANG Xiao-li Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities, 2009, (01) : 105 - 113
  • [4] Generalized braided Hopf algebras
    LU Zhongjian FANG Xiaoli Department of Mathematics Shaoxing College of Arts and Sciences Shaoxing China
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2009, 24 (01) : 105 - 113
  • [5] Weak Braided Hopf Algebras
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (05) : 2423 - 2458
  • [6] Connected braided Hopf algebras
    Kharchenko, V. K.
    JOURNAL OF ALGEBRA, 2007, 307 (01) : 24 - 48
  • [7] Central braided Hopf algebras
    Schauenburg, Peter
    HOPF ALGEBRAS AND GENERALIZATIONS, 2007, 441 : 117 - 147
  • [8] Generalized braided Hopf algebras
    Zhong-jian Lu
    Xiao-li Fang
    Applied Mathematics-A Journal of Chinese Universities, 2009, 24 : 105 - 113
  • [9] Braided Hopf algebras obtained from coquasitriangular Hopf algebras
    Beattie, Margaret
    Bulacu, Daniel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (01) : 115 - 160
  • [10] Integrals for braided Hopf algebras
    Bespalov, Y
    Kerler, T
    Lyubashenko, V
    Turaev, V
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 148 (02) : 113 - 164