An improved YOLO-based method with lightweight C3 modules for object detection in resource-constrained environments

被引:0
|
作者
Song, Jian [1 ]
Xie, Jie [1 ]
Wang, Qingwang [1 ]
Shen, Tao [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2025年 / 81卷 / 05期
基金
中国国家自然科学基金;
关键词
Model lightweight design; Object detectors; Limited resources; YOLO;
D O I
10.1007/s11227-025-07187-w
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid advancement of deep learning algorithms, object detectors have achieved impressive performance in practical applications. An efficient detection framework is essential for performing detection tasks on devices with limited computational resources. However, current detection algorithms often face challenges due to their complexity, including numerous parameters and significant computational demands. To overcome these challenges, this paper introduces a streamlined and effective detection method. The integration of the FasterNet Block into the Cross-Stage Partial Network (C3) of the backbone reduces computational and storage demands. Additionally, by introducing cross-scale feature fusion in the neck network, the computational load and parameter requirements during inference are further decreased. Meanwhile, the dynamic head with multi-scale processing and Shape-IoU enhances detection accuracy and robustness, achieving a balance between lightweight design and performance. Compared to the original YOLOv5 models, the proposed lightweight method reduces the number of parameters by 29.4 to 43.0%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and compresses the size of the model by 31.6 to 42.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} while maintaining a high mAP@0.5. Furthermore, the designed models achieve a faster inference speed since the computations could be reduced by more than 30%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}. In robustness experiments under varying lighting conditions, the proposed model demonstrates stable detection performance even in challenging lighting scenarios, showing its reliability in real-world applications. In conclusion, our research offers considerable improvements in model accuracy, parameter efficiency, and size compared to the mainstream object detection algorithms.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Object Detection Method Based on Improved YOLO Lightweight Network
    Li Chengyue
    Yao Jianmin
    Lin Zhixian
    Yan Qun
    Fan Baoqing
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (14)
  • [2] Lightweight Object Detection Method for Constrained Environments
    Qu, Haicheng
    Yuan, Xudong
    Li, Jiaqi
    Computer Engineering and Applications, 2024, 60 (06) : 274 - 281
  • [3] SenseLite: A YOLO-Based Lightweight Model for Small Object Detection in Aerial Imagery
    Han, Tianxin
    Dong, Qing
    Sun, Lina
    SENSORS, 2023, 23 (19)
  • [4] Integrating Retinex Theory for YOLO-Based Object Detection in Low-Illumination Environments
    Tao, Yixiong
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT IX, 2025, 15209 : 301 - 311
  • [5] CSPPartial-YOLO: A Lightweight YOLO-Based Method for Typical Objects Detection in Remote Sensing Images
    Xie, Siyu
    Zhou, Mei
    Wang, Chunle
    Huang, Shisheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 388 - 399
  • [6] Melon ripeness detection by an improved object detection algorithm for resource constrained environments
    Jing, Xuebin
    Wang, Yuanhao
    Li, Dongxi
    Pan, Weihua
    PLANT METHODS, 2024, 20 (01)
  • [7] An improved small object detection method based on Yolo V3
    Xianbao, Cheng
    Guihua, Qiu
    Yu, Jiang
    Zhaomin, Zhu
    PATTERN ANALYSIS AND APPLICATIONS, 2021, 24 (03) : 1347 - 1355
  • [8] An improved small object detection method based on Yolo V3
    Cheng Xianbao
    Qiu Guihua
    Jiang Yu
    Zhu Zhaomin
    Pattern Analysis and Applications, 2021, 24 : 1347 - 1355
  • [9] Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments
    Fang, Wei
    Wang, Lin
    Ren, Peiming
    IEEE ACCESS, 2020, 8 : 1935 - 1944
  • [10] Lightweight cotton diseases real-time detection model for resource-constrained devices in natural environments
    Pan, Pan
    Shao, Mingyue
    He, Peitong
    Hu, Lin
    Zhao, Sijian
    Huang, Longyu
    Zhou, Guomin
    Zhang, Jianhua
    FRONTIERS IN PLANT SCIENCE, 2024, 15