Globally, it has been witnessed that the demand for energy has been increasing daily due to the rapid expansion of industries. As an initiative toward alternative energy, Piezoelectric technology has been implemented for energy harvesting applications to overcome this issue. So, various researchers are developing a flexible, lightweight piezoelectric-based energy harvesting device that can effectively capture mechanical vibrations and convert them into electrical energy. In this concern, polyvinylidene fluoride (PVDF), a polymer-based piezoelectric material, has attained great response with its exceptional piezo, pyro, and ferroelectric properties. Therefore, the current research article focuses on developing PVDF-based nanocomposite films for energy-harvesting applications under low-speed wind turbine. PVDF films were incorporated with various compositions of zinc oxide (ZnO), zirconium oxide (ZrO2), and titanium dioxide (TiO2) nanofillers and synthesized using the solution casting technique to achieve excellent piezoelectric performance. Finally, the fabricated PVDF film samples were tested under a low-speed wind tunnel and resulted that the PVDF film sample possessing 0.4 wt.% of ZnO/ZrO2/TiO2 showed a maximum electrical potential of 1210 mV at 20 m/s velocity, which is 5 times larger than pristine PVDF films which shows that the fabricated PVDF film samples are promising portable electronic nanogenerator (PENG) devices.