Template-based universal adversarial attack for synthetic aperture radar automatic target recognition network

被引:0
|
作者
Liu, Wei [1 ]
Wan, Xuanshen [1 ]
Niu, Chaoyang [1 ]
Lu, Wanjie [1 ]
Li, Yuanli [1 ]
机构
[1] PLA Informat Engn Univ, Inst Data & Target Engn, Zhengzhou, Peoples R China
来源
IET RADAR SONAR AND NAVIGATION | 2025年 / 19卷 / 01期
基金
中国国家自然科学基金;
关键词
artificial intelligence; image recognition; radar target recognition; synthetic aperture radar; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1049/rsn2.12691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing synthetic aperture radar (SAR) adversarial attack algorithms primarily focus on the digital image domain, and constructing adversarial examples in real-world scenarios presents significant and challenging hurdles. This study proposes the template-based universal adversarial attack (TUAA) algorithm. Initially, a SAR interference template generator module is constructed to derive a universal adversarial perturbation in the image domain. The designed loss function guides the parameter updating of the generator, thereby improving the attack effectiveness and perturbation concealment. Subsequently, a SAR jamming signal generator module is developed, which swiftly generates the interference signal using the range convolutional and azimuth multiplication modulation jamming method. Consequently, the victim model can be effectively targeted by merely transmitting the jamming signal to the SAR receiver. Experimental results show that TUAA reduces the recognition rate of four typical DNN models to less than 15% under acceptable time costs and image deformation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Synthetic aperture radar automatic target recognition based on cost-sensitive awareness generative adversarial network for imbalanced data
    Qin, Jikai
    Liu, Zheng
    Ran, Lei
    Xie, Rong
    IET RADAR SONAR AND NAVIGATION, 2024, 18 (09): : 1391 - 1408
  • [2] SIAMESE NEURAL NETWORK FOR AUTOMATIC TARGET RECOGNITION USING SYNTHETIC APERTURE RADAR
    Khenchaf, Yasmine
    Toumi, Abdelmalek
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7503 - 7506
  • [3] Automatic Target Recognition for Synthetic Aperture Radar Images Based on Super-Resolution Generative Adversarial Network and Deep Convolutional Neural Network
    Shi, Xiaoran
    Zhou, Feng
    Yang, Shuang
    Zhang, Zijing
    Su, Tao
    REMOTE SENSING, 2019, 11 (02)
  • [4] Synthetic Aperture Radar Automatic Target Recognition Based on a Simple Attention Mechanism
    Ukwuoma, Chiagoziem C.
    Zhiguang, Qin
    Tienin, Bole W.
    Yussif, Sophyani B.
    Ejiyi, Chukwuebuka J.
    Urama, Gilbert C.
    Ukwuoma, Chibueze D.
    Chikwendu, Ijeoma A.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2023, 8 (04): : 67 - 77
  • [5] Automatic Target Recognition on Synthetic Aperture Radar Imagery: A Survey
    Kechagias-Stamatis, Odysseas
    Aouf, Nabil
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2021, 36 (03) : 56 - 81
  • [6] Transferable Targeted Adversarial Attack on Synthetic Aperture Radar (SAR) Image Recognition
    Zheng, Sheng
    Han, Dongshen
    Lu, Chang
    Hou, Chaowen
    Han, Yanwen
    Hao, Xinhong
    Zhang, Chaoning
    REMOTE SENSING, 2025, 17 (01)
  • [7] Attention Heat Map-Based Black-Box Local Adversarial Attack for Synthetic Aperture Radar Target Recognition
    Wan, Xuanshen
    Liu, Wei
    Niu, Chaoyang
    Lu, Wanjie
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2024, 90 (10): : 601 - 609
  • [8] Exploitation of target shadows in synthetic aperture radar imagery for automatic target recognition
    Saghri, John A.
    DeKelaita, Andrew
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXIX, 2006, 6312
  • [9] Synthetic Aperture Radar Target Recognition Based on Multimodule Image Enhancement Network
    Wang, Xuan
    Lu, Yuliang
    Yan, Xuehu
    Li, Da
    He, Chunqian
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [10] KERNEL ROTATIONAL NETWORK FOR SYNTHETIC APERTURE RADAR TARGET RECOGNITION
    Zhou, Yuanyuan
    Hu, Yao
    Wang, Chen
    Wang, Mou
    Shi, Jun
    Wei, Shunjun
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2763 - 2766