This paper explores the Darcy-Forchheimer MHD flow over a non-uniform, elastico-viscous sheet that varies in thickness, including the impacts of chemical reactions and heat sources alongside coupled thermo-diffusive (Soret) and diffusive-thermo (Dufour) phenomena. Fluid motion is driven by stretching the sheet along the x-axis, with influences of magnetic fields, viscosity, inertia, permeability, volume fraction, and other physical parameters. The HAM is used in Mathematica to solve the nonlinear ODEs after similarity transformation. The results show that greater values of permeability, inertia, magnetic field strength, and volume fraction decrease velocity, especially in the case of (h1=0.0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$h_{1} = 0.0$$\end{document}). With increasing Prandtl number, Dufour number, and volume fraction, thermal distribution decreases but increases with a stronger heat source for both h2=0.0andh2=0.2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {h_{2} = 0.0\, and\,h_{2} = 0.2} \right)$$\end{document}. Concentration decreases with increasing Schmidt number and chemical reactivity but increases with the Soret effect and volume fraction. This effect is particularly seen when h3=0.0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {h_{3} = 0.0} \right)$$\end{document}. These studies deal with coupled influences of thermo-diffusive parameters that present important contributions toward aeromechanical design, systems for renewable energies, electronics cooling, and industrial flow processes. This study provides a basis for the optimization of performance in applications that require close control of temperature and concentration.