A mechanism to generate varying speed of light via Higgs-dilaton coupling: theory and cosmological applications

被引:0
|
作者
Hoang Ky Nguyen [1 ]
机构
[1] Babeş-Bolyai University,Department of Physics
[2] Institute for Interdisciplinary Research in Science and Education,undefined
[3] ICISE,undefined
来源
关键词
D O I
10.1140/epjc/s10052-025-14082-4
中图分类号
学科分类号
摘要
We probe into a class of scale-invariant actions, which allow the Higgs field Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} to interact with a dilaton field χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} of the background spacetime through the term χ2Φ†Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{2}\,\Phi ^{\dagger }\Phi $$\end{document}. Upon spontaneous gauge symmetry breaking, the vacuum expectation value (VEV) of the Higgs field becomes proportional to χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}. Although this linkage is traditionally employed to make the Planck mass and particle masses dependent on χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}, we present an alternative mechanism: the Higgs VEV will be used to construct Planck’s quantum of action ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document} and speed of light c. Specifically, each open set vicinity of a given point x∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{*}$$\end{document} on the spacetime manifold is equipped with a replica of the Glashow–Weinberg–Salam action operating with its own effective values of ħ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar _{*}$$\end{document}and c∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{*}$$\end{document} per ħ∗∝χ-1/2(x∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar _{*}\propto \chi ^{-1/2}(x^{*})$$\end{document} and c∗∝χ1/2(x∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{*}\propto \chi ^{1/2}(x^{*})$$\end{document}, causing these “fundamental constants” to vary alongside the dynamical field χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}. Moreover, in each open set around x∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{*}$$\end{document}, the prevailing value χ(x∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (x^{*})$$\end{document} determines the length and time scales for physical processes occurring in this region as l∝χ-1(x∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l\propto \chi ^{-1}(x^{*})$$\end{document} and τ∝χ-3/2(x∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \propto \chi ^{-3/2}(x^{*})$$\end{document}. This leads to an anisotropic relation τ-1∝l-3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^{-1}\propto l^{-3/2}$$\end{document} between the rate of clocks and the length of rods, resulting in a distinct set of novel physical phenomena. For late-time cosmology, the variation of c along the trajectory of light waves from distant supernovae towards the Earth-based observer necessitates modifications to the Lemaître redshift formula, the Hubble law, and the luminosity distance–redshift relation. These modifications are capable of: (1) Accounting for the Pantheon Catalog of Type Ia supernovae through a declining speed of light in an expanding Einstein–de Sitter universe, thus avoiding the need for dark energy; (2) Revitalizing Blanchard–Douspis–Rowan-Robinson–Sarkar’s CMB power spectrum analysis that bypassed dark energy; and (3) Resolving the H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{0}$$\end{document} tension without requiring a dynamical dark energy component.
引用
收藏
相关论文
共 2 条
  • [1] Varying-speed-of-light theory with a variable cosmological term
    Chakraborty, S
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2002, 117 (02): : 189 - 195
  • [2] The cosmological constant as an eigenvalue of the Hamiltonian constraint in a varying speed of light theory
    Garattini, Remo
    De laurentis, Mariafelicia
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (01):