Atomic-level Cu active sites enable energy-efficient CO2 electroreduction to multicarbon products in strong acid

被引:2
|
作者
Fan, Lizhou [1 ,2 ]
Li, Feng [3 ]
Liu, Tianqi [2 ]
Huang, Jianan Erick [1 ]
Miao, Rui Kai [3 ]
Yan, Yu [1 ]
Feng, Shihui [4 ]
Tai, Cheuk-Wai [4 ]
Hung, Sung-Fu [5 ,6 ]
Tsai, Hsin-Jung [5 ,6 ]
Chen, Meng-Cheng [5 ,6 ]
Bai, Yang [1 ]
Kim, Dongha [1 ]
Park, Sungjin [1 ]
Papangelakis, Panos [3 ]
Wu, Chengqian [3 ]
Shayesteh Zeraati, Ali [3 ]
Dorakhan, Roham [1 ]
Sun, Licheng [2 ]
Sinton, David [3 ]
Sargent, Edward [1 ,7 ,8 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
[2] KTH Royal Inst Technol, Dept Chem, Stockholm, Sweden
[3] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON, Canada
[4] Stockholm Univ, Dept Mat & Environm Chem, Arrhenius Lab, Stockholm, Sweden
[5] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu, Taiwan
[6] Natl Yang Ming Chiao Tung Univ, Ctr Emergent Funct Matter Sci, Hsinchu, Taiwan
[7] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[8] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
来源
NATURE SYNTHESIS | 2025年 / 4卷 / 02期
基金
加拿大自然科学与工程研究理事会; 瑞典研究理事会; 加拿大创新基金会;
关键词
REDUCTION; CATALYST; SELECTIVITY; DESIGN;
D O I
10.1038/s44160-024-00689-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical CO2 reduction provides a promising strategy to synthesize C2+ compounds with reduced carbon intensity; however, high overall energy consumption restricts practical implementation. Using acidic media enables high CO2 utilization and low liquid product crossover, but to date has suffered low C2+ product selectivity. Here we hypothesize that adjacent pairs of atomic-copper active sites may favour C-C coupling, thus facilitating C2+ product formation. We construct tandem electrocatalysts with two distinct classes of active sites, the first for CO2 to CO, and the second, a dual-atomic-site catalyst, for CO to C2+. This leads to an ethanol Faradaic efficiency of 46% and a C2+ product Faradaic efficiency of 91% at 150 mA cm-2 in an acidic CO2 reduction reaction. We document a CO2 single-pass utilization of 78% and an energy efficiency of 30% towards C2+ products; an ethanol crossover rate of 5%; and an ethanol product concentration of 4.5%, resulting in an exceptionally low projected energy cost of 249 GJ t-1 for the electrosynthesis of ethanol via the CO2 reduction reaction. Tandem electrocatalysts are developed for acidic CO2 electroreduction. The catalyst contains planar-copper for CO2 reduction to CO, and a dual-copper-active-site layer for CO reduction to C2+ products. An ethanol Faradaic efficiency of 46% and a C2+ Faradaic efficiency of 91% are achieved in acidic electrolyte at 150 mA cm-2.
引用
收藏
页码:262 / 270
页数:9
相关论文
共 50 条
  • [1] Atomic-Level Copper Sites for Selective CO2 Electroreduction to Hydrocarbon
    Guan, Anxiang
    Yang, Chao
    Wang, Qihao
    Qian, Linping
    Cao, Jinyuan
    Zhang, Lijuan
    Wu, Limin
    Zheng, Gengfeng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (40): : 13536 - 13544
  • [2] CO2 electrolysis to multicarbon products in strong acid
    Huang, Jianan Erick
    Li, Fengwang
    Ozden, Adnan
    Rasouli, Armin Sedighian
    de Arquer, F. Pelayo Garcia
    Liu, Shijie
    Zhang, Shuzhen
    Luo, Mingchuan
    Wang, Xue
    Lum, Yanwei
    Xu, Yi
    Bertens, Koen
    Miao, Rui Kai
    Dinh, Cao-Thang
    Sinton, David
    Sargent, Edward H.
    SCIENCE, 2021, 372 (6546) : 1074 - +
  • [3] Fluorine Doping-Assisted Reconstruction of Isolated Cu Sites for CO2 Electroreduction Toward Multicarbon Products
    Jia, Chen
    Tan, Xin
    Sun, Qian
    Liu, Ruirui
    Hocking, Rosalie K.
    Wang, Shuhao
    Zhong, Li
    Shi, Zhun
    Smith, Sean
    Zhao, Chuan
    ADVANCED MATERIALS, 2025, 37 (09)
  • [4] Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction
    Pan, Fuping
    Zhang, Hanguang
    Liu, Zhenyu
    Cullen, David
    Liu, Kexi
    More, Karren
    Wu, Gang
    Wang, Guofeng
    Li, Ying
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (46) : 26231 - 26237
  • [5] Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products
    Ke Xie
    Rui Kai Miao
    Adnan Ozden
    Shijie Liu
    Zhu Chen
    Cao-Thang Dinh
    Jianan Erick Huang
    Qiucheng Xu
    Christine M. Gabardo
    Geonhui Lee
    Jonathan P. Edwards
    Colin P. O’Brien
    Shannon W. Boettcher
    David Sinton
    Edward H. Sargent
    Nature Communications, 13
  • [6] Mg-Doped Cu Catalyst for Electroreduction of CO2 to Multicarbon Products: Lewis Acid Sites Simultaneously Promote *CO Adsorption and Water Dissociation
    Wang, Jiahao
    Zang, Hu
    Liu, Xin
    Liu, Changjiang
    Lu, Haiyan
    Yu, Nan
    Geng, Baoyou
    INORGANIC CHEMISTRY, 2024, 63 (40) : 18892 - 18901
  • [7] Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products
    Xie, Ke
    Miao, Rui Kai
    Ozden, Adnan
    Liu, Shijie
    Chen, Zhu
    Dinh, Cao-Thang
    Huang, Jianan Erick
    Xu, Qiucheng
    Gabardo, Christine M.
    Lee, Geonhui
    Edwards, Jonathan P.
    O'Brien, Colin P.
    Boettcher, Shannon W.
    Sinton, David
    Sargent, Edward H.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [8] Integrating Cu+/Cu0 sites on porous nitrogen-doped carbon nanofibers for stable and efficient CO2 electroreduction to multicarbon products
    Chao, Yicheng
    Zhang, Jiahao
    Wu, Qinyue
    Fan, Xinfei
    Quan, Xie
    Liu, Yanming
    JOURNAL OF ENERGY CHEMISTRY, 2025, 101 : 453 - 462
  • [9] Dual atomic Cu sites enable CO2-to-C2+ conversion in strong acid
    Zhou, Liyuan
    Cao, Liucheng
    Xia, Bao Yu
    CHEM CATALYSIS, 2025, 5 (02):
  • [10] Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment
    Yong Zhao
    Long Hao
    Adnan Ozden
    Shijie Liu
    Rui Kai Miao
    Pengfei Ou
    Tartela Alkayyali
    Shuzhen Zhang
    Jing Ning
    Yongxiang Liang
    Yi Xu
    Mengyang Fan
    Yuanjun Chen
    Jianan Erick Huang
    Ke Xie
    Jinqiang Zhang
    Colin P. O’Brien
    Fengwang Li
    Edward H. Sargent
    David Sinton
    Nature Synthesis, 2023, 2 : 403 - 412