2-Local automorphisms and derivations of triangular matrices2-Local automorphisms and derivations of triangular matricesW. Huang and S. Li

被引:0
|
作者
Wenbo Huang [1 ]
Shan Li [1 ]
机构
[1] Jiangsu University of Technology,School of Mathematics and Physics
关键词
47B49; 15A60;
D O I
10.1007/s43036-025-00430-4
中图分类号
学科分类号
摘要
Let T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document} denote the algebra of all 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times 2$$\end{document} upper triangular matrices over a field F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}$$\end{document}. We show that the linear space of all 2-local derivations on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document} decomposes as L=D⊕L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L} = \mathcal {D} \oplus \mathcal {L}_0$$\end{document}, where D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}$$\end{document} is the subspace of all derivations, and L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_0$$\end{document} consists of 2-local derivations vanishing on a subset of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}, isomorphic to the space of functions f:F→F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {F}\rightarrow \mathbb {F}$$\end{document} such that f(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)=0$$\end{document}. For any 2-local automorphism Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}, we show that there exists a unique automorphism ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} and a 2-local automorphism Λ1∈Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{1} \in \varPsi $$\end{document} such that Λ=ϕΛ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda = \phi \Lambda _1$$\end{document}, where Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPsi $$\end{document} is the monoid of 2-local automorphisms that act as the identity on a subset of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}$$\end{document}. Furthermore, we establish that Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPsi $$\end{document} is isomorphic to the monoid of injective functions from F∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}^{*}$$\end{document} to itself.
引用
收藏
相关论文
共 50 条
  • [1] 2-Local automorphisms and derivations of triangular matrices
    Huang, Wenbo
    Li, Shan
    ADVANCES IN OPERATOR THEORY, 2025, 10 (02)
  • [2] Local derivations and 2-local Lie derivations of triangular algebras
    Liu, Dan
    Niu, Xiaolei
    SCIENCEASIA, 2024, 50 (02):
  • [3] 2-Local derivations and automorphisms on B(H)
    Ayupov, Sh.
    Kudaybergenov, K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 15 - 18
  • [4] Local and 2-Local Derivations and Automorphisms on Simple Leibniz Algebras
    Shavkat Ayupov
    Karimbergen Kudaybergenov
    Bakhrom Omirov
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2199 - 2234
  • [5] Local and 2-Local Derivations and Automorphisms on Simple Leibniz Algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    Omirov, Bakhrom
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2199 - 2234
  • [6] Local Jordan Derivations and Local Jordan Automorphisms of Upper Triangular Matrix Algebras
    Yan Xia ZHAO Rui Ping YAO Deng Yin WANG School of Mathematics and Information ScienceHenan Polytechnic UniversityHenan PRChinaDepartment of MathematicsChina University of Mining and TechnologyJiangsu PRChina
    数学研究与评论, 2010, 30 (03) : 465 - 474
  • [7] Local Jordan Derivations and Local Jordan Automorphisms of Upper Triangular Matrix Algebras
    Yan Xia ZHAO 1
    2.Department of Mathematics
    Journal of Mathematical Research with Applications, 2010, (03) : 465 - 474
  • [8] Local and 2-local Lie n-derivations of triangular algebras
    Zhao, Xingpeng
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (10) : 4388 - 4398
  • [9] Description of 2-local derivations and automorphisms on finite-dimensional Jordan algebras
    Ayupov, Sh. A.
    Arzikulov, F. N.
    Umrzaqov, N. M.
    Nuriddinov, O. O.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (18): : 3525 - 3542
  • [10] 2-LOCAL) DERIVATIONS AND AUTOMORPHISMS AND BIDERIVATIONS OF COMPLEX ω-LIE ALGEBRAS A TITLE ON MULTIPLE ROWS
    Oubba, H.
    MATEMATICHE, 2024, 79 (01): : 135 - 150