Using computer modeling to find new LRRK2 inhibitors for parkinson’s disease

被引:0
|
作者
María C. García [1 ]
Sebastián A. Cuesta [1 ]
José R. Mora [2 ]
Jose L. Paz [1 ]
Yovani Marrero-Ponce [3 ]
Frank Alexis [4 ]
Edgar A. Márquez [1 ]
机构
[1] Universidad San Francisco de Quito,Departamento de Ingeniería Química, Diego de Robles y Vía Interoceánica
[2] The University of Manchester,Department of Chemistry, Manchester Institute of Biotechnology
[3] Universidad Nacional Mayor de San Marcos,Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química
[4] Universidad San Francisco de Quito,Grupo de Medicina Molecular y Traslacional (MeM&T)
[5] Escuela de Medicina,Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas
[6] Colegio de Ciencias de la Salud (COCSA),undefined
[7] Universidad del Norte,undefined
关键词
Parkinson’s disease; Molecular docking; Molecular dynamics; Virtual screening; DrugBank;
D O I
10.1038/s41598-025-86926-8
中图分类号
学科分类号
摘要
Parkinson’s disease (PD) is a complex neurodegenerative disorder that affects multiple neurotransmitters, and its exact cause is still unknown. Developing new drugs for PD is a lengthy and expensive process, making it difficult to find new treatments. This study aims to create a detailed dataset to build strong predictive models with various machine learning algorithms. An ensemble modeling approach was employed to screen the DrugBank database, aiming to repurpose approved medications as potential treatments for Parkinson’s disease (PD). The dataset was constructed using pIC50 values of various compounds targeting the inhibition of leucine-rich repeat kinase 2 (LRRK2). The best ensemble model showed exceptional predictive performance, with five-fold cross-validation and external validation metrics exceeding 0.8 (Q2cv = 0.864 and Q2ext = 0.873). The DrugBank screening resulted in three promising drugs—triamterene, phenazopyridine, and CRA_1801—with predicted pIC50 values greater than 7, warranting further investigation as novel PD treatments. Molecular docking and molecular dynamics simulations were performed to provide a comprehensive understanding of the interactions between LRRK2 and the inhibitors in the data set and best molecules of the screening. Free energy of binding calculation along with hydrogen bond occupancy analysis and RMSD of the ligand in the pocket show CRA_1801 as the best candidate to be repurposed as LRRK2 inhibitor.
引用
收藏
相关论文
共 50 条
  • [1] New Pyrrolopyrimidines as LRRK2 Inhibitors for Treating Parkinson's Disease
    De, Surya K.
    CURRENT MEDICINAL CHEMISTRY, 2024, 31 (33) : 5477 - 5480
  • [2] Inhibitors of LRRK2 as Treatment for Parkinson's Disease
    Abdel-Magid, Ahmed F.
    ACS MEDICINAL CHEMISTRY LETTERS, 2012, 3 (09): : 701 - 702
  • [3] Development of LRRK2 Kinase Inhibitors for Parkinson's Disease
    Galatsis, Paul
    Henderson, Jaclyn
    Kormos, Bethany L.
    Hirst, Warren D.
    ANNUAL REPORTS IN MEDICINAL CHEMISTRY, VOL 49, 2014, 49 : 43 - 58
  • [4] A step forward for LRRK2 inhibitors in Parkinson's disease
    Lewis, Patrick A.
    SCIENCE TRANSLATIONAL MEDICINE, 2022, 14 (648)
  • [5] Novel Macrocyclic LRRK2 Inhibitors for Treating Parkinson's Disease
    Sabnis, Ram W.
    ACS MEDICINAL CHEMISTRY LETTERS, 2022,
  • [6] QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease
    Sebastian-Perez, Victor
    Jimena Martinez, Maria
    Gil, Carmen
    Eugenia Campillo, Nuria
    Martinez, Ana
    Ponzoni, Ignacio
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2019, 16 (01):
  • [7] LRRK2 and the new era of Parkinson's disease research
    不详
    LANCET NEUROLOGY, 2016, 15 (12): : 1195 - 1195
  • [8] New LRRK2 variants identified in Parkinson's disease
    Tan, E. K.
    Schapira, A. H.
    EUROPEAN JOURNAL OF NEUROLOGY, 2011, 18 (03) : 369 - 370
  • [9] LRRK2 kinase in Parkinson's disease
    Alessi, Dario R.
    Sammler, Esther
    SCIENCE, 2018, 360 (6384) : 36 - 37
  • [10] Function of LRRK2 in Parkinson's Disease
    Zhu Fei-Zhou
    Xia Kun
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2010, 37 (10) : 1059 - 1066