LungGENIE: the lung gene-expression and network imputation engine

被引:0
|
作者
Ghosh, Auyon J. [1 ]
Coyne, Liam P. [2 ]
Panda, Sanchit [1 ]
Menon, Aravind A. [3 ]
Moll, Matthew [4 ,5 ,6 ]
Archer, Michael A. [7 ]
Wallen, Jason [7 ]
Middleton, Frank A. [8 ]
Hersh, Craig P. [4 ,5 ,6 ]
Glatt, Stephen J. [8 ,9 ]
Hess, Jonathan L. [9 ]
机构
[1] SUNY Upstate Med Univ, Dept Med, Div Pulm Crit Care Med & Sleep Med, 750 East Adams St, Syracuse, NY 13210 USA
[2] Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD USA
[3] Med Univ South Carolina, Dept Med, Div Pulm Crit Care Allergy & Sleep Med, Charleston, SC USA
[4] Brigham & Womens Hosp, Channing Div Network Med, Boston, MA USA
[5] Brigham & Womens Hosp, Div Pulm & Crit Care Med, Boston, MA USA
[6] Harvard Med Sch, Boston, MA USA
[7] SUNY Upstate Med Univ, Dept Surg, Div Thorac Surg, Syracuse, NY USA
[8] SUNY Upstate Med Univ, Dept Neurosci & Physiol, Syracuse, NY USA
[9] SUNY Upstate Med Univ, Dept Psychiat & Behav Sci, Syracuse, NY USA
来源
BMC GENOMICS | 2025年 / 26卷 / 01期
关键词
Gene-expression; Imputation; Chronic obstructive pulmonary disease;
D O I
10.1186/s12864-025-11412-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundFew cohorts have study populations large enough to conduct molecular analysis of ex vivo lung tissue for genomic analyses. Transcriptome imputation is a non-invasive alternative with many potential applications. We present a novel transcriptome-imputation method called the Lung Gene Expression and Network Imputation Engine (LungGENIE) that uses principal components from blood gene-expression levels in a linear regression model to predict lung tissue-specific gene-expression.MethodsWe use paired blood and lung RNA sequencing data from the Genotype-Tissue Expression (GTEx) project to train LungGENIE models. We replicate model performance in a unique dataset, where we generated RNA sequencing data from paired lung and blood samples available through the SUNY Upstate Biorepository (SUBR). We further demonstrate proof-of-concept application of LungGENIE models in an independent blood RNA sequencing data from the Genetic Epidemiology of COPD (COPDGene) study.ResultsWe show that LungGENIE prediction accuracies have higher correlation to measured lung tissue expression compared to existing cis-expression quantitative trait loci-based methods (median Pearson's r = 0.25, IQR 0.19-0.32), with close to half of the reliably predicted transcripts being replicated in the testing dataset. Finally, we demonstrate significant correlation of differential expression results in chronic obstructive pulmonary disease (COPD) from imputed lung tissue gene-expression and differential expression results experimentally determined from lung tissue.ConclusionOur results demonstrate that LungGENIE provides complementary results to existing expression quantitative trait loci-based methods and outperforms direct blood to lung results across internal cross-validation, external replication, and proof-of-concept in an independent dataset. Taken together, we establish LungGENIE as a tool with many potential applications in the study of lung diseases.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] LungGENIE: The Lung Gene Expression and Network Imputation Engine
    Ghosh, A. J.
    Hess, J.
    Hersh, C. P.
    Glatt, S.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205
  • [2] BrainGENIE: The Brain Gene Expression and Network Imputation Engine
    Hess, Jonathan
    Quinn, Thomas
    Zhang, Chunling
    Hearn, Gentry
    Chen, Samuel
    Kong, Sek Won T.
    Cairns, Murray V.
    Tsuang, Ming J.
    Faraone, Stephen
    Glatt, Stephen
    TRANSLATIONAL PSYCHIATRY, 2023, 13 (01)
  • [3] BrainGENIE: The Brain Gene Expression and Network Imputation Engine
    Jonathan L. Hess
    Thomas P. Quinn
    Chunling Zhang
    Gentry C. Hearn
    Samuel Chen
    Sek Won Kong
    Murray Cairns
    Ming T. Tsuang
    Stephen V. Faraone
    Stephen J. Glatt
    Translational Psychiatry, 13
  • [4] HYPEROXIC EXPOSURE ALTERS GENE-EXPRESSION IN THE LUNG
    HOROWITZ, S
    DAFNI, N
    SHAPIRO, DL
    HOLM, BA
    NOTTER, RH
    QUIBLE, DJ
    PEDIATRIC RESEARCH, 1989, 25 (04) : A314 - A314
  • [5] Lung tissue gene-expression signature for the ageing lung in COPD
    de Vries, Maaike
    Faiz, Alen
    Woldhuis, Roy R.
    Postma, Dirkje S.
    de Jong, Tristan V.
    Sin, Don D.
    Bosse, Yohan
    Nickle, David C.
    Guryev, Victor
    Timens, Wim
    van den Berge, Maarten
    Brandsma, Corry-Anke
    THORAX, 2018, 73 (07) : 609 - 617
  • [6] GENE ECOLOGY - A NOVEL REGULATORY SYSTEM IN THE GENE-EXPRESSION NETWORK
    NAORA, H
    RIVISTA DI BIOLOGIA-BIOLOGY FORUM, 1986, 79 (03): : 345 - 371
  • [7] REGULATION OF SURFACTANT APOPROTEIN GENE-EXPRESSION IN FETAL LUNG
    MENDELSON, CR
    BOGGARAM, V
    JOURNAL OF CELLULAR BIOCHEMISTRY, 1987, : 120 - 120
  • [8] GROWTH-FACTOR GENE-EXPRESSION IN LUNG FIBROBLASTS
    YU, YI
    YANG, GZ
    CHINESE MEDICAL JOURNAL, 1993, 106 (11) : 841 - 844
  • [9] PREFERENTIAL GENE-EXPRESSION IN QUIESCENT HUMAN LUNG FIBROBLASTS
    COPPOCK, DL
    KOPMAN, C
    SCANDALIS, S
    GILLERAN, S
    CELL GROWTH & DIFFERENTIATION, 1993, 4 (06): : 483 - 493
  • [10] CELLULAR SITE OF CERULOPLASMIN GENE-EXPRESSION IN THE DEVELOPING LUNG
    SHIMIZU, N
    GITLIN, JD
    PEDIATRIC RESEARCH, 1991, 29 (04) : A51 - A51