Exploring the correlation between DNA methylation and biological age using an interpretable machine learning framework

被引:0
|
作者
Zhou, Sheng [1 ]
Chen, Jing [2 ]
Wei, Shanshan [1 ]
Zhou, Chengxing [3 ]
Wang, Die [4 ]
Yan, Xiaofan [5 ]
He, Xun [5 ]
Yan, Pengcheng [6 ]
机构
[1] Guizhou Med Univ, Dept Publ Hlth & Hlth, Guiyang, Guizhou, Peoples R China
[2] Guizhou Prov Drug Adm Inspect Ctr, Guiyang, Guizhou, Peoples R China
[3] Guizhou Med Univ, Sch Biology&Engineering, Sch Hlth Med Modern Ind, Guiyang, Guizhou, Peoples R China
[4] Guizhou Med Univ, Coll Anesthesia, Guiyang, Guizhou, Peoples R China
[5] Guizhou Med Univ, Sch Med & Hlth Management, Guiyang, Guizhou, Peoples R China
[6] Guizhou Med Univ, Sch Clin Med, Guiyang, Guizhou, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
DNA methylation; Biological age; GO enrichment analysis; XGBoost; Interpretable machine learning; Shapley Additive exPlanations;
D O I
10.1038/s41598-024-75586-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA methylation plays a significant role in regulating transcription and exhibits a systematic change with age. These changes can be used to predict an individual's age. First, to identify methylation sites associated with biological age; second, to construct a biological age prediction model and preliminarily explore the biological significance of methylation-associated genes using machine learning. A biological age prediction model was constructed using human methylation data through data preprocessing, feature selection procedures, statistical analysis, and machine learning techniques. Subsequently, 15 methylation data sets were subjected to in-depth analysis using SHAP, GO enrichment, and KEGG analysis. XGBoost, LightGBM, and CatBoost identified 15 groups of methylation sites associated with biological age. The cg23995914 locus was identified as the most significant contributor to predicting biological age by calculating SHAP values. Furthermore, GO enrichment and KEGG analyses were employed to initially explore the methylated loci's biological significance.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Biological age of the endometrium using DNA methylation
    Olesen, Mia S.
    Starnawska, Anna
    Bybjerg-Grauholm, Jonas
    Bielfeld, Alexandra P.
    Agerholm, Inge
    Forman, Axel
    Overgaard, Michael T.
    Nyegaard, Mette
    REPRODUCTION, 2018, 155 (02) : 165 - 170
  • [2] Exploring legal age estimation using DNA methylation
    Boullon-Cassau, M.
    Ambroa-Conde, A.
    de Cal, M. A. Casares
    Gomez-Tato, A.
    Mosquera-Miguel, A.
    Ruiz-Ramirez, J.
    Cabrejas-Olalla, A.
    Gonzalez-Bao, J.
    Casanova-Adan, L.
    de la Puente, M.
    Rodriguez, A.
    Phillips, C.
    Lareu, M. V.
    Freire-Aradas, A.
    FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2025, 74
  • [3] Interpretable machine learning identification of arginine methylation sites
    Ali, Syed Danish
    Tayara, Hilal
    Chong, Kil To
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 147
  • [4] ExplaiNAble BioLogical Age (ENABL Age): an artificial intelligence framework for interpretable biological age
    Qiu, Wei
    Chen, Hugh
    Kaeberlein, Matt
    Lee, Su-In
    LANCET HEALTHY LONGEVITY, 2023, 4 (12): : E711 - E723
  • [5] Exploring Evaluation Methods for Interpretable Machine Learning: A Survey
    Alangari, Nourah
    Menai, Mohamed El Bachir
    Mathkour, Hassan
    Almosallam, Ibrahim
    INFORMATION, 2023, 14 (08)
  • [6] Reproduction, DNA methylation and biological age
    Kresovich, Acob K.
    Harmon, Quaker E.
    Xu, Zongli
    Nichols, Hazel B.
    Sandler, Dale R.
    Taylor, Jack A.
    HUMAN REPRODUCTION, 2019, 34 (10) : 1965 - 1973
  • [7] An interpretable schizophrenia diagnosis framework using machine learning and explainable artificial intelligence
    Shivaprasad, Samhita
    Chadaga, Krishnaraj
    Dias, Cifha Crecil
    Sampathila, Niranjana
    Prabhu, Srikanth
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [8] The explanation game: a formal framework for interpretable machine learning
    Watson, David S.
    Floridi, Luciano
    SYNTHESE, 2021, 198 (10) : 9211 - 9242
  • [9] The explanation game: a formal framework for interpretable machine learning
    David S. Watson
    Luciano Floridi
    Synthese, 2021, 198 : 9211 - 9242
  • [10] R.ROSETTA: an interpretable machine learning framework
    Garbulowski, Mateusz
    Diamanti, Klev
    Smolinska, Karolina
    Baltzer, Nicholas
    Stoll, Patricia
    Bornelov, Susanne
    Ohrn, Aleksander
    Feuk, Lars
    Komorowski, Jan
    BMC BIOINFORMATICS, 2021, 22 (01)