Toward a framework for risk mitigation of potential misuse of artificial intelligence in biomedical research

被引:2
|
作者
Trotsyuk, Artem A. [1 ]
Waeiss, Quinn [1 ,2 ]
Bhatia, Raina Talwar [1 ]
Aponte, Brandon J. [1 ]
Heffernan, Isabella M. L. [1 ]
Madgavkar, Devika [1 ]
Felder, Ryan Marshall [3 ]
Lehmann, Lisa Soleymani [4 ,5 ]
Palmer, Megan J. [6 ]
Greely, Hank [7 ]
Wald, Russell [8 ]
Goetz, Lea [9 ]
Trengove, Markus [9 ]
Vandersluis, Robert [9 ]
Lin, Herbert [10 ,11 ]
Cho, Mildred K. [1 ]
Altman, Russ B. [6 ,12 ]
Endy, Drew [6 ]
Relman, David A. [10 ,13 ,14 ]
Levi, Margaret [10 ,15 ]
Satz, Debra [16 ]
Magnus, David [1 ]
机构
[1] Stanford Univ, Ctr Biomed Ethics, Sch Med, Stanford, CA 94305 USA
[2] Stanford Univ, McCoy Family Ctr Ethics Soc, Stanford, CA USA
[3] Cleveland Clin, Ctr Bioeth, Cleveland, OH USA
[4] Harvard TH Chan Sch Publ Hlth, Boston, MA USA
[5] Harvard Med Sch, Boston, MA USA
[6] Stanford Univ, Dept Bioengn, Stanford, CA USA
[7] Stanford Univ, Stanford Law Sch, Stanford, CA USA
[8] Stanford Univ, Human Ctr Artificial Intelligence, Stanford, CA USA
[9] Artificial Intelligence & Machine Learning GSK, London, England
[10] Stanford Univ, Freeman Spogli Inst Int Studies, Stanford, CA USA
[11] Stanford Univ, Hoover Inst, Stanford, CA USA
[12] Stanford Univ, Dept Genet, Stanford, CA USA
[13] Stanford Univ, Sch Med, Dept Med, Stanford, CA USA
[14] Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA USA
[15] Stanford Univ, Dept Polit Sci, Stanford, CA USA
[16] Stanford Univ, Dept Philosophy, Stanford, CA USA
基金
美国国家卫生研究院;
关键词
AMBIENT INTELLIGENCE; HEALTH;
D O I
10.1038/s42256-024-00926-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid advancement of artificial intelligence (AI) in biomedical research presents considerable potential for misuse, including authoritarian surveillance, data misuse, bioweapon development, increase in inequity and abuse of privacy. We propose a multi-pronged framework for researchers to mitigate these risks, looking first to existing ethical frameworks and regulatory measures researchers can adapt to their own work, next to off-the-shelf AI solutions, then to design-specific solutions researchers can build into their AI to mitigate misuse. When researchers remain unable to address the potential for harmful misuse, and the risks outweigh potential benefits, we recommend researchers consider a different approach to answering their research question, or a new research question if the risks remain too great. We apply this framework to three different domains of AI research where misuse is likely to be problematic: (1) AI for drug and chemical discovery; (2) generative models for synthetic data; (3) ambient intelligence. The wide adoption of AI in biomedical research raises concerns about misuse risks. Trotsyuk, Waeiss et al. propose a framework that provides a starting point for researchers to consider how risks specific to their work could be mitigated, using existing ethical frameworks, regulatory measures and off-the-shelf AI solutions.
引用
收藏
页码:1435 / 1442
页数:8
相关论文
共 50 条
  • [1] The potential application of artificial intelligence in veterinary clinical practice and biomedical research
    Akinsulie, Olalekan Chris
    Idris, Ibrahim
    Aliyu, Victor Ayodele
    Shahzad, Sammuel
    Banwo, Olamilekan Gabriel
    Ogunleye, Seto Charles
    Olorunshola, Mercy
    Okedoyin, Deborah O.
    Ugwu, Charles
    Oladapo, Ifeoluwa Peace
    Gbadegoye, Joy Olaoluwa
    Akande, Qudus Afolabi
    Babawale, Pius
    Rostami, Sahar
    Soetan, Kehinde Olugboyega
    FRONTIERS IN VETERINARY SCIENCE, 2024, 11
  • [2] The AIMe registry for artificial intelligence in biomedical research
    Julian Matschinske
    Nicolas Alcaraz
    Arriel Benis
    Martin Golebiewski
    Dominik G. Grimm
    Lukas Heumos
    Tim Kacprowski
    Olga Lazareva
    Markus List
    Zakaria Louadi
    Josch K. Pauling
    Nico Pfeifer
    Richard Röttger
    Veit Schwämmle
    Gregor Sturm
    Alberto Traverso
    Kristel Van Steen
    Martiela Vaz de Freitas
    Gerda Cristal Villalba Silva
    Leonard Wee
    Nina K. Wenke
    Massimiliano Zanin
    Olga Zolotareva
    Jan Baumbach
    David B. Blumenthal
    Nature Methods, 2021, 18 : 1128 - 1131
  • [3] The AIMe registry for artificial intelligence in biomedical research
    Matschinske, Julian
    Alcaraz, Nicolas
    Benis, Arriel
    Golebiewski, Martin
    Grimm, Dominik G.
    Heumos, Lukas
    Kacprowski, Tim
    Lazareva, Olga
    List, Markus
    Louadi, Zakaria
    Pauling, Josch K.
    Pfeifer, Nico
    Roettger, Richard
    Schwaemmle, Veit
    Sturm, Gregor
    Traverso, Alberto
    Van Steen, Kristel
    de Freitas, Martiela Vaz
    Villalba Silva, Gerda Cristal
    Wee, Leonard
    Wenke, Nina K.
    Zanin, Massimiliano
    Zolotareva, Olga
    Baumbach, Jan
    Blumenthal, David B.
    NATURE METHODS, 2021, 18 (10) : 1128 - 1131
  • [4] Artificial Intelligence: A Case Study on Risk Mitigation
    Al-Gindy, Ahmed
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (04): : 9 - 12
  • [5] Applied Artificial Intelligence: Risk Mitigation Matters
    Jastroch, Norbert
    PRODUCT LIFECYCLE MANAGEMENT: GREEN AND BLUE TECHNOLOGIES TO SUPPORT SMART AND SUSTAINABLE ORGANIZATIONS, PT I, 2022, 639 : 279 - 292
  • [6] A competence framework for artificial intelligence research
    Miracchi, Lisa
    PHILOSOPHICAL PSYCHOLOGY, 2019, 32 (05) : 589 - 634
  • [7] The biomedical applications of artificial intelligence: an overview of decades of research
    Naskar, Sweet
    Sharma, Suraj
    Kuotsu, Ketousetuo
    Halder, Suman
    Pal, Goutam
    Saha, Subhankar
    Mondal, Shubhadeep
    Biswas, Ujjwal Kumar
    Jana, Mayukh
    Bhattacharjee, Sunirmal
    JOURNAL OF DRUG TARGETING, 2024,
  • [8] Artificial Intelligence on High Throughput Data for Biomedical Research
    Liang, Stanley
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2021, 24 (07) : 891 - 892
  • [9] Artificial Intelligence Applications for Biomedical Cancer Research: A Review
    Weerarathna, Induni N.
    Kamble, Aahash R.
    Luharia, Anurag
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (11)
  • [10] VirtuGuard: Ethically Aligned Artificial Intelligence Framework for Cyberbullying Mitigation
    Wang, Min
    Boshuijzen-van Burkent, Christine
    Sun, Nan
    Kermanshahi, Shabnam Kasra
    Zhang, Yu
    Hu, Jiankun
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 1507 - 1509