A hybrid model based on LSTM-CNN combined with attention mechanism for MPC concrete strength prediction

被引:0
|
作者
Zhang, Shuyang [1 ]
Xia, Jin [1 ]
Chen, Keyu [1 ]
Zhang, Dawei [1 ]
机构
[1] College of Civil Engineering and Architecture, Zhejiang University, Hangzhou,310058, China
来源
基金
中国国家自然科学基金;
关键词
Light velocity - Ultrasonic testing;
D O I
10.1016/j.jobe.2024.110779
中图分类号
学科分类号
摘要
Magnesium phosphate cement (MPC) has emerged as a rapid-setting repair material widely used in various emergency reinforcement projects. When MPC is applied in road repair, it's important to assess the quality of repaired pavements through the strength of the material, especially the compressive strength in our research. To ensure the structural functionality of rehabilitated pavements, Non-destructive testing (NDT) techniques are highly recommended, for the reason that the pavements could stay integrated and workable while being tested. In this study, we fabricated 206 sets of MPC specimens of different ages, and the ultrasonic-rebound combined method was raised to test the MPC material, from which we got the rebound hammer (RH) values, the ultrasonic pulse velocity (UPV) values and the values of the material's compressive strength. To predict the compressive strength of concrete (fc), a variety of machine-learning methods are used through making use of the input parameters (R and UPV in this study). Here, a model named LAC, which integrates Long Short-Term Memory, convolutional layers, and attention mechanism has been proposed for estimating the compressive strength of concrete. Compared with other state-of-the-art and classic machine-learning methods, the proposed model obtained the optimal statistical indexes on the test set, including R2 value delivered 0.98. The study showed that the proposed model is efficient while predicting the compressive strength of concrete with the ultrasonic-rebound combined method. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] An Attention-based Hybrid LSTM-CNN Model for Arrhythmias Classification
    Liu, Fan
    Zhou, Xingshe
    Wang, Tianben
    Cao, Jinli
    Wang, Zhu
    Wang, Hua
    Zhang, Yanchun
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [2] Stock Price Prediction using Combined LSTM-CNN Model
    Zhou, Xinrong
    2021 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING, BIG DATA AND BUSINESS INTELLIGENCE (MLBDBI 2021), 2021, : 67 - 71
  • [3] LSTM-CNN Hybrid Model for Text Classification
    Zhang, Jiarui
    Li, Yingxiang
    Tian, Juan
    Li, Tongyan
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 1675 - 1680
  • [4] An attention-based bidirectional LSTM-CNN architecture for the early prediction of sepsis
    Das, Pronaya Prosun
    Wiese, Lena
    Mast, Marcel
    Boehnke, Julia
    Wulff, Antje
    Marschollek, Michael
    Bode, Louisa
    Rathert, Henning
    Jack, Thomas
    Schamer, Sven
    Beerbaum, Philipp
    Ruebsamen, Nicole
    Karch, Andre
    Groszweski-Anders, Christian
    Haller, Andreas
    Frank, Torsten
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [5] A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism
    Yurong Yang
    Qingyu Xiong
    Chao Wu
    Qinghong Zou
    Yang Yu
    Hualing Yi
    Min Gao
    Environmental Science and Pollution Research, 2021, 28 : 55129 - 55139
  • [6] A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism
    Yang, Yurong
    Xiong, Qingyu
    Wu, Chao
    Zou, Qinghong
    Yu, Yang
    Yi, Hualing
    Gao, Min
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (39) : 55129 - 55139
  • [7] PROPOSED BAYESIAN OPTIMIZATION BASED LSTM-CNN MODEL FOR STOCK TREND PREDICTION
    Chan, Bey Kun
    Johnson, Olanrewaju Victor
    Chew, Xinying
    Khaw, Khai Wah
    Ha Lee, Ming
    Alnoor, Alhamzah
    COMPUTING AND INFORMATICS, 2024, 43 (02) : 38 - 63
  • [8] Dynamic pollution emission prediction method of a combined heat and power system based on the hybrid CNN-LSTM model and attention mechanism
    Anping Wan
    Jie Yang
    Ting Chen
    Yang Jinxing
    Ke Li
    Zhou Qinglong
    Environmental Science and Pollution Research, 2022, 29 : 69918 - 69931
  • [9] Dynamic pollution emission prediction method of a combined heat and power system based on the hybrid CNN-LSTM model and attention mechanism
    Wan, Anping
    Yang, Jie
    Chen, Ting
    Yang Jinxing
    Li, Ke
    Zhou Qinglong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (46) : 69918 - 69931
  • [10] Advanced Combined LSTM-CNN Model for Twitter Sentiment Analysis
    Chen, Nan
    Wang, Peikang
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 684 - 687