Equidistribution of non-uniformly stretching translates of shrinking smooth curves and weighted Dirichlet approximation

被引:0
|
作者
Shah, Nimish A. [1 ]
Yang, Pengyu [2 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
[2] Chinese Acad Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会; 中国国家自然科学基金;
关键词
Homogeneous dynamics; Unipotent flow; Dirichlet-improvable vectors; Equidistribution; HOMOGENEOUS SPACES; DIOPHANTINE APPROXIMATION; LIMIT DISTRIBUTIONS; GEODESIC-FLOW; THEOREM; TRAJECTORIES; ORBITS;
D O I
10.1007/s00209-024-03603-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the action of at=diag(ent,e-r1(t),& mldr;,e-rn(t))is an element of SL(n+1,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_t=\textrm{diag}(e<^>{nt},e<^>{-r_1(t)},\ldots ,e<^>{-r_n(t)})\in \textrm{SL}(n+1,{\mathbb {R}})$$\end{document}, where ri(t)->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_i(t)\rightarrow \infty $$\end{document} for each i, on the space of unimodular lattices in Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>{n+1}$$\end{document}. We show that at\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_t$$\end{document}-translates of segments of size e-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e<^>{-t}$$\end{document} about all except countably many points of a nondegenerate smooth horospherical curve get equidistributed in the space as t ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}. This result implies that the weighted Dirichlet approximation theorem cannot be improved for almost all points on any nondegenerate C2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{2n}$$\end{document} curve in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>n$$\end{document}. These results extend the corresponding results for translates of fixed pieces of analytic curves due to Shah (2010) as well as those for uniform translates of shrinking curves due to Shah and Yang (2023), and answer some questions inspired by the work of Davenport and Schmidt (1969) and Kleinbock and Weiss (2008).
引用
收藏
页数:52
相关论文
共 35 条