Diffusive Limit of the Boltzmann Equation in Bounded Domains

被引:0
|
作者
Ouyang, Zhimeng [1 ]
Wu, Lei [2 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
INCOMPRESSIBLE NAVIER-STOKES; FLUID DYNAMIC LIMITS; HYDRODYNAMIC LIMIT; GLOBAL EQUILIBRIUM; KINETIC-EQUATIONS; EULER EQUATIONS; ACOUSTIC LIMIT; SYSTEMS; WAVES; TREND;
D O I
10.1007/s00220-024-05152-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The investigation of rigorous justification of the hydrodynamic limits in bounded domains has seen significant progress in recent years. While some headway has been made for the diffuse-reflection boundary case (Esposito et al. in Ann PDE 4:1-119, 2018; Ghost effect from Boltzmann theory. arXiv:2301.09427, 2023; Jang and Kim in Ann PDE 7:103, 2021), the more intricate in-flow boundary case, where the leading-order boundary layer effect cannot be neglected, still poses an unresolved challenge. In this study, we tackle the stationary and evolutionary Boltzmann equations, considering the in-flow boundary conditions within both convex and non-convex bounded domains, and demonstrate their diffusive limits in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}. Our approach hinges on a groundbreaking insight: a remarkable gain of epsilon 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon <^>{\frac{1}{2}}$$\end{document} in the kernel estimate, which arises from a meticulous selection of test functions and the careful application of conservation laws. Additionally, we introduce a boundary layer with a grazing-set cutoff and investigate its BV regularity estimates to effectively control the source terms in the remainder equation with the help of the Hardy's inequality.
引用
收藏
页数:85
相关论文
共 50 条