A web-based artificial intelligence system for label-free virus classification and detection of cytopathic effects

被引:0
|
作者
Zeynep Akkutay-Yoldar [1 ]
Mehmet Türkay Yoldar [2 ]
Yiğit Burak Akkaş [3 ]
Sibel Şurak [2 ]
Furkan Garip [3 ]
Oğuzcan Turan [3 ]
Bengisu Ekizoğlu [2 ]
Osman Can Yüca [2 ]
Aykut Özkul [2 ]
Barış Ünver [1 ]
机构
[1] Ankara University,Department of Virology, Faculty of Veterinary Medicine
[2] Bilkent Cyberpark,TURK AI Artificial Intelligence Information and Software Systems
[3] Ankara University,Graduate School of Health Sciences
关键词
BoAHV-1; BoGHV-4; BPIV3; BAdV-1; CPE; Deep learning; One health; SARS-COV-2;
D O I
10.1038/s41598-025-89639-0
中图分类号
学科分类号
摘要
Identifying viral replication within cells demands labor-intensive isolation methods, requiring specialized personnel and additional confirmatory tests. To facilitate this process, we developed an AI-powered automated system called AI Recognition of Viral CPE (AIRVIC), specifically designed to detect and classify label-free cytopathic effects (CPEs) induced by SARS-CoV-2, BAdV-1, BPIV3, BoAHV-1, and two strains of BoGHV-4 in Vero and MDBK cell lines. AIRVIC utilizes convolutional neural networks, with ResNet50 as the primary architecture, trained on 40,369 microscopy images at various magnifications. AIRVIC demonstrated strong CPE detection, achieving 100% accuracy for the BoGHV-4 DN-599 strain in MDBK cells, the highest among tested strains. In contrast, the BoGHV-4 MOVAR 33/63 strain in Vero cells showed a lower accuracy of 87.99%, the lowest among all models tested. For virus classification, a multi-class accuracy of 87.61% was achieved for bovine viruses in MDBK cells; however, it dropped to 63.44% when the virus was identified without specifying the cell line. To the best of our knowledge, this is the first research article published in English to utilize AI for distinguishing animal virus infections in cell culture. AIRVIC’s hierarchical structure highlights its adaptability to virological diagnostics, providing unbiased infectivity scoring and facilitating viral isolation and antiviral efficacy testing. Additionally, AIRVIC is accessible as a web-based platform, allowing global researchers to leverage its capabilities in viral diagnostics and beyond.
引用
收藏
相关论文
共 50 条
  • [1] ROBUST CLASSIFICATION OF MAMMALIAN EMBRYOS AND OOCYTES BASED ON LABEL-FREE HYPERSPECTRAL IMAGING AND ARTIFICIAL INTELLIGENCE
    Ojosnegros, Samuel
    Parra, Albert
    Denkova, Denitza
    Burgos-Artizzu, Xavier P. Paolo
    Casals Sandoval, Marc
    Oliver-Vila, Irene
    Costa Borges, Nuno
    Mestres, Enric
    Acacio, Monica
    Seriola, Anna
    FERTILITY AND STERILITY, 2023, 120 (04) : E42 - E42
  • [2] Epilepsy classification using artificial intelligence: A web-based application
    Asadi-Pooya, Ali A.
    Fattahi, Davood
    Abolpour, Nahid
    Boostani, Reza
    Farazdaghi, Mohsen
    Sharifi, Mehrdad
    EPILEPSIA OPEN, 2023, 8 (04) : 1362 - 1368
  • [3] Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging
    Hollon, Todd
    Jiang, Cheng
    Chowdury, Asadur
    Nasir-Moin, Mustafa
    Kondepudi, Akhil
    Aabedi, Alexander
    Adapa, Arjun
    Al-Holou, Wajd
    Heth, Jason
    Sagher, Oren
    Lowenstein, Pedro
    Castro, Maria
    Wadiura, Lisa Irina
    Widhalm, Georg
    Neuschmelting, Volker
    Reinecke, David
    von Spreckelsen, Niklas
    Berger, Mitchel S.
    Hervey-Jumper, Shawn L.
    Golfinos, John G.
    Snuderl, Matija
    Camelo-Piragua, Sandra
    Freudiger, Christian
    Lee, Honglak
    Orringer, Daniel A.
    NATURE MEDICINE, 2023, 29 (04) : 828 - 832
  • [4] Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging
    Todd Hollon
    Cheng Jiang
    Asadur Chowdury
    Mustafa Nasir-Moin
    Akhil Kondepudi
    Alexander Aabedi
    Arjun Adapa
    Wajd Al-Holou
    Jason Heth
    Oren Sagher
    Pedro Lowenstein
    Maria Castro
    Lisa Irina Wadiura
    Georg Widhalm
    Volker Neuschmelting
    David Reinecke
    Niklas von Spreckelsen
    Mitchel S. Berger
    Shawn L. Hervey-Jumper
    John G. Golfinos
    Matija Snuderl
    Sandra Camelo-Piragua
    Christian Freudiger
    Honglak Lee
    Daniel A. Orringer
    Nature Medicine, 2023, 29 : 828 - 832
  • [5] A WEB-BASED TUTORING SYSTEM BASED ON LEARNING THEORY AND ARTIFICIAL INTELLIGENCE
    Lv, Jiake
    Wang, Xuan
    Jiang, Wei
    Wei, Chaofu
    PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON COMPUTERS AND INDUSTRIAL ENGINEERING, VOLS 1-3, 2008, : 1382 - 1387
  • [6] Artificial Intelligence for Cell Segmentation, Event Detection, and Tracking for Label-Free Microscopy Imaging
    Maddalena, Lucia
    Antonelli, Laura
    Albu, Alexandra
    Hada, Aroj
    Guarracino, Mario Rosario
    ALGORITHMS, 2022, 15 (09)
  • [7] Label-Free Blood Typing by Raman Spectroscopy and Artificial Intelligence
    Jensen, Emil Alstrup
    Serhatlioglu, Murat
    Uyanik, Cihan
    Hansen, Anne Todsen
    Puthusserypady, Sadasivan
    Dziegiel, Morten Hanefeld
    Kristensen, Anders
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (02)
  • [8] A versatile automated pipeline for quantifying virus infectivity by label-free light microscopy and artificial intelligence
    Petkidis, Anthony
    Andriasyan, Vardan
    Murer, Luca
    Volle, Romain
    Greber, Urs F.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [9] Artificial intelligence-based classification of peripheral blood nucleated cells using label-free imaging flow cytometry
    Hirotsu, Amane
    Kikuchi, Hirotoshi
    Yamada, Hidenao
    Ozaki, Yusuke
    Haneda, Ryoma
    Kawata, Sanshiro
    Murakami, Tomohiro
    Matsumoto, Tomohiro
    Hiramatsu, Yoshihiro
    Kamiya, Kinji
    Yamashita, Daisuke
    Fujimori, Yuki
    Ueda, Yukio
    Okazaki, Shigetoshi
    Kitagawa, Masatoshi
    Konno, Hiroyuki
    Takeuchi, Hiroya
    LAB ON A CHIP, 2022, 22 (18) : 3464 - 3474
  • [10] A DNAzyme based label-free detection system for miniaturized assays
    Koester, Daniela M.
    Haselbach, David
    Lehrach, Hans
    Seitz, Harald
    MOLECULAR BIOSYSTEMS, 2011, 7 (10) : 2882 - 2889