STGFP: information enhanced spatio-temporal graph neural network for traffic flow predictionSTGFP: information enhanced spatio-temporal graph neural network...Q. Li et al.

被引:0
|
作者
Qi Li [1 ]
Fan Wang [1 ]
Chen Wang [2 ]
机构
[1] Shaoxing University,Institute of Artificial Intelligence
[2] Chongqing University,School of Computer Science
关键词
Traffic flow prediction; Graph neural network; Information enhanced; Attention mechanism; Non-Euclidean structure;
D O I
10.1007/s10489-025-06377-6
中图分类号
学科分类号
摘要
Accurate traffic flow prediction is crucial for the development of intelligent transportation systems aimed at preventing and mitigating traffic issues. We present an information-enhanced spatio-temporal graph neural network model to predict traffic flow, addressing the inefficient utilization of non-Euclidean structured traffic data. Firstly, we employ a multivariate temporal attention mechanism to capture dynamic temporal correlations across different time intervals, while a second-order graph attention network identifies spatial correlations within the network. Secondly, we construct two types of traffic topology graphs that comprehensively describe traffic flow features by integrating non-Euclidean traffic flow data, regional traffic status information, and node features. Finally, a multi-graph convolution neural network is designed to extract long-range spatial features from these traffic topology graphs. The spatio-temporal feature extraction module then combines these long-range spatial features with spatio-temporal features to fuse multiple features and improve prediction accuracy. Experimental results demonstrate that the proposed approach outperforms state-of-the-art baseline methods in predicting traffic flow performance.
引用
收藏
相关论文
共 50 条
  • [1] A Spatio-Temporal Graph Neural Network Approach for Traffic Flow Prediction
    Li, Yanbing
    Zhao, Wei
    Fan, Huilong
    MATHEMATICS, 2022, 10 (10)
  • [2] A graph neural network incorporating spatio-temporal information for location recommendation
    Chen, Yunliang
    Huang, Guoquan
    Wang, Yuewei
    Huang, Xiaohui
    Min, Geyong
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 3633 - 3654
  • [3] A graph neural network incorporating spatio-temporal information for location recommendation
    Yunliang Chen
    Guoquan Huang
    Yuewei Wang
    Xiaohui Huang
    Geyong Min
    World Wide Web, 2023, 26 : 3633 - 3654
  • [4] Adaptive Spatio-temporal Graph Neural Network for traffic forecasting
    Ta, Xuxiang
    Liu, Zihan
    Hu, Xiao
    Yu, Le
    Sun, Leilei
    Du, Bowen
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [5] Spatio-Temporal Graph-TCN Neural Network for Traffic Flow Prediction
    Ren, Hongjin
    Kang, Jinbiao
    Zhang, Ke
    2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2022, 2022,
  • [6] SPATIO-TEMPORAL GRAPH-TCN NEURAL NETWORK FOR TRAFFIC FLOW PREDICTION
    Ren, Hongjin
    Kang, Jinbiao
    Zhang, Ke
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [7] Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction
    Wang, Weitai
    Wang, Xiaoqiang
    Li, Leixiao
    Tao, Yihao
    Lin, Hao
    Computer Engineering and Applications, 2024, 60 (08) : 31 - 45
  • [8] Spatio-temporal communication network traffic prediction method based on graph neural network
    Qin, Liang
    Gu, Huaxi
    Wei, Wenting
    Xiao, Zhe
    Lin, Zexu
    Liu, Lu
    Wang, Ning
    INFORMATION SCIENCES, 2024, 679
  • [9] COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for Traffic Forecasting
    Ju, Wei
    Zhao, Yusheng
    Qin, Yifang
    Yi, Siyu
    Yuan, Jingyang
    Xiao, Zhiping
    Luo, Xiao
    Yan, Xiting
    Zhang, Ming
    INFORMATION FUSION, 2024, 107
  • [10] Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph Neural Network
    Roy, Amit
    Roy, Kashob Kumar
    Ali, Amin Ahsan
    Amin, M. Ashraful
    Rahman, A. K. M. Mahbubur
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,