STGFP: information enhanced spatio-temporal graph neural network for traffic flow prediction

被引:0
|
作者
Li, Qi [1 ]
Wang, Fan [1 ]
Wang, Chen [2 ]
机构
[1] Shaoxing Univ, Inst Artificial Intelligence, Shaoxing 312000, Zhejiang, Peoples R China
[2] Chongqing Univ, Sch Comp Sci, Chongqing 400044, Peoples R China
关键词
Traffic flow prediction; Graph neural network; Information enhanced; Attention mechanism; Non-Euclidean structure; MODELS;
D O I
10.1007/s10489-025-06377-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate traffic flow prediction is crucial for the development of intelligent transportation systems aimed at preventing and mitigating traffic issues. We present an information-enhanced spatio-temporal graph neural network model to predict traffic flow, addressing the inefficient utilization of non-Euclidean structured traffic data. Firstly, we employ a multivariate temporal attention mechanism to capture dynamic temporal correlations across different time intervals, while a second-order graph attention network identifies spatial correlations within the network. Secondly, we construct two types of traffic topology graphs that comprehensively describe traffic flow features by integrating non-Euclidean traffic flow data, regional traffic status information, and node features. Finally, a multi-graph convolution neural network is designed to extract long-range spatial features from these traffic topology graphs. The spatio-temporal feature extraction module then combines these long-range spatial features with spatio-temporal features to fuse multiple features and improve prediction accuracy. Experimental results demonstrate that the proposed approach outperforms state-of-the-art baseline methods in predicting traffic flow performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A Spatio-Temporal Graph Neural Network Approach for Traffic Flow Prediction
    Li, Yanbing
    Zhao, Wei
    Fan, Huilong
    MATHEMATICS, 2022, 10 (10)
  • [2] SPATIO-TEMPORAL GRAPH-TCN NEURAL NETWORK FOR TRAFFIC FLOW PREDICTION
    Ren, Hongjin
    Kang, Jinbiao
    Zhang, Ke
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [3] Spatio-Temporal Graph-TCN Neural Network for Traffic Flow Prediction
    Ren, Hongjin
    Kang, Jinbiao
    Zhang, Ke
    2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2022, 2022,
  • [4] Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction
    Wang, Weitai
    Wang, Xiaoqiang
    Li, Leixiao
    Tao, Yihao
    Lin, Hao
    Computer Engineering and Applications, 2024, 60 (08) : 31 - 45
  • [5] Research on traffic flow prediction based on adaptive spatio-temporal perceptual graph neural network for traffic prediction
    Liang, Qian
    Yin, Xiang
    Xia, Chengliang
    Chen, Ye
    ACM International Conference Proceeding Series, : 1101 - 1105
  • [6] A spatio-temporal grammar graph attention network with adaptive edge information for traffic flow prediction
    Zhang, Zhao
    Jiao, Xiaohong
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28787 - 28803
  • [7] A spatio-temporal grammar graph attention network with adaptive edge information for traffic flow prediction
    Zhao Zhang
    Xiaohong Jiao
    Applied Intelligence, 2023, 53 : 28787 - 28803
  • [8] Spatio-temporal communication network traffic prediction method based on graph neural network
    Qin, Liang
    Gu, Huaxi
    Wei, Wenting
    Xiao, Zhe
    Lin, Zexu
    Liu, Lu
    Wang, Ning
    INFORMATION SCIENCES, 2024, 679
  • [9] Traffic Flow Prediction Based on Spatio-Temporal Aggregated Graph Neural Networks
    Wu, Shuangshuang
    Hu, Yao
    TRANSPORTATION RESEARCH RECORD, 2025,
  • [10] Federated Spatio-Temporal Traffic Flow Prediction Based on Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 221 - 225