Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening (vol 42, pg 872, 2024)

被引:0
|
作者
Bulbul, Hande Melike [1 ]
Burakgazi, Gulen [1 ]
Kesimal, Ugur [2 ]
Kaba, Esat [1 ]
机构
[1] Recep Tayyip Erdogan Univ Training & Res Hosp, Minist Hlth, Dept Radiol, Rize, Turkiye
[2] Ankara Res & Training Hosp, Dept Radiol, Minist Hlth, Ankara, Turkiye
关键词
D O I
10.1007/s11604-024-01715-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
引用
收藏
页码:330 / 330
页数:1
相关论文
共 50 条
  • [1] Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening
    Bulbul, Hande Melike
    Burakgazi, Gulen
    Kesimal, Ugur
    Kaba, Esat
    JAPANESE JOURNAL OF RADIOLOGY, 2024, 42 (08) : 872 - 879
  • [2] Differentiation between Germinoma and Craniopharyngioma Using Radiomics-Based Machine Learning
    Chen, Boran
    Chen, Chaoyue
    Zhang, Yang
    Huang, Zhouyang
    Wang, Haoran
    Li, Ruoyu
    Xu, Jianguo
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (01):
  • [3] Radiomics-Based Machine Learning in Differentiation Between Glioblastoma and Metastatic Brain Tumors
    Chen, Chaoyue
    Ou, Xuejin
    Wang, Jian
    Guo, Wen
    Ma, Xuelei
    FRONTIERS IN ONCOLOGY, 2019, 9
  • [4] Differentiation of benign from malignant solid renal lesions with MRI-based radiomics and machine learning
    Ruben Ngnitewe Massa’a
    Elizabeth M. Stoeckl
    Meghan G. Lubner
    David Smith
    Lu Mao
    Daniel D. Shapiro
    E. Jason Abel
    Andrew L. Wentland
    Abdominal Radiology, 2022, 47 : 2896 - 2904
  • [5] Differentiation of benign from malignant solid renal lesions with MRI-based radiomics and machine learning
    Massa'a, Ruben Ngnitewe
    Stoeckl, Elizabeth M.
    Lubner, Meghan G.
    Smith, David
    Mao, Lu
    Shapiro, Daniel D.
    Abel, E. Jason
    Wentland, Andrew L.
    ABDOMINAL RADIOLOGY, 2022, 47 (08) : 2896 - 2904
  • [6] Radiomics-based machine learning for automated detection of Pneumothorax in CT scans (vol 19, e0314988, 2024)
    Dehbaghi, Hanieh Alimiri
    Khoshgard, Karim
    Sharini, Hamid
    Khairabadi, Samira Jafari
    Naleini, Farhad
    PLOS ONE, 2025, 20 (04):
  • [7] RADIOMICS-BASED MACHINE LEARNING APPROACH IN DIFFERENTIATION BETWEEN VESTIBULAR SCHWANNOMA AND MENINGIOMA IN THE CEREBELLOPONTINE ANGLE
    Zhang, Y.
    Chen, C.
    Xu, J.
    NEURO-ONCOLOGY, 2021, 23 : 26 - 26
  • [8] Radiomics-Based Machine Learning Technology Enables Better Differentiation Between Glioblastoma and Anaplastic Oligodendroglioma
    Fan, Yimeng
    Chen, Chaoyue
    Zhao, Fumin
    Tian, Zerong
    Wang, Jian
    Ma, Xuelei
    Xu, Jianguo
    FRONTIERS IN ONCOLOGY, 2019, 9
  • [9] Development and validation of a machine learning-based CT radiomics model for differentiation of benign and malignant solid renal tumors
    Bang, S.
    Kwon, H. J.
    Yoon, C. I.
    Rhew, S. A.
    Shin, D.
    Moon, H. W.
    Cho, H. J.
    Ha, U.
    Lee, J. Y.
    Hong, S.
    EUROPEAN UROLOGY, 2023, 83
  • [10] Development and evaluation of machine learning models based on X-ray radiomics for the classification and differentiation of malignant and benign bone tumors
    von Schacky, Claudio E.
    Wilhelm, Nikolas J.
    Schaefer, Valerie S.
    Leonhardt, Yannik
    Jung, Matthias
    Jungmann, Pia M.
    Russe, Maximilian F.
    Foreman, Sarah C.
    Gassert, Felix G.
    Gassert, Florian T.
    Schwaiger, Benedikt J.
    Mogler, Carolin
    Knebel, Carolin
    Von Eisenhart-Rothe, Ruediger
    Makowski, Marcus R.
    Woertler, Klaus
    Burgkart, Rainer
    Gersing, Alexandra S.
    EUROPEAN RADIOLOGY, 2022, 32 (09) : 6247 - 6257