Decoding the m6A epitranscriptomic landscape for biotechnological applications using a direct RNA sequencing approach

被引:0
|
作者
Liu, Chuwei [1 ]
Liang, Heng [2 ]
Wan, Arabella H. [3 ]
Xiao, Min [2 ]
Sun, Lei [2 ]
Yu, Yiling [4 ]
Yan, Shijia [2 ]
Deng, Yuan [2 ]
Liu, Ruonian [2 ]
Fang, Juan [5 ]
Wang, Zhi [5 ]
He, Weiling [1 ,6 ]
Wan, Guohui [2 ]
机构
[1] Sun Yat sen Univ, Affiliated Hosp 1, Dept Gastrointestinal Surg, Guangzhou 510080, Peoples R China
[2] Sun Yat Sen Univ, Natl Engn Res Ctr New Drug & Druggabil Cultivat, Natl Local Joint Engn Lab Druggabil & New Drug Eva, Sch Pharmaceut Sci,Guangdong Prov Key Lab New Drug, Guangzhou 510006, Peoples R China
[3] Univ Southern Calif, Keck Sch Med, Dept Med, Los Angeles, CA 90033 USA
[4] Sun Yat Sen Univ, Sch Publ Hlth, Guangzhou 510080, Peoples R China
[5] Sun Yat Sen Univ, Hosp Stomatol, Guanghua Sch Stomatol, Guangdong Prov Key Lab Stomatol, Guangzhou 510055, Peoples R China
[6] Xiamen Univ, Xiangan Hosp, Sch Med, Dept Gastrointestinal Surg, Xiamen 361000, Peoples R China
基金
中国国家自然科学基金;
关键词
MESSENGER-RNA; NUCLEAR-RNA; METHYLATION; N6-METHYLADENOSINE; PURIFICATION; SUBUNIT; HYPOXIA; M6A;
D O I
10.1038/s41467-025-56173-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Epitranscriptomic modifications, particularly N6-methyladenosine (m6A), are crucial regulators of gene expression, influencing processes such as RNA stability, splicing, and translation. Traditional computational methods for detecting m6A from Nanopore direct RNA sequencing (DRS) data are constrained by their reliance on experimentally validated labels, often resulting in the underestimation of modification sites. Here, we introduce pum6a, an innovative attention-based framework that integrates positive and unlabeled multi-instance learning (MIL) to address the challenges of incomplete labeling and missing read-level annotations. By combining electrical signal features with base alignment data and employing a weighted Noisy-OR probability mechanism, pum6a achieves enhanced sensitivity and accuracy in m6A detection, particularly in low-coverage loci. Pum6a outperforms existing methods in identifying m6A sites across various cell lines and species, without requiring extensive parameter tuning. We further apply pum6a to study the dynamic regulation of m6A demethylases in gastric cancer under hypoxia, revealing distinct roles for FTO and ALKBH5 in modulating m6A modifications and uncovering key insights into m6A -mediated transcript stability. Our findings highlight the potential of pum6a as a powerful tool for advancing the understanding of epitranscriptomic regulation in health and disease, paving the way for biotechnological and therapeutic applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Revealing the epitranscriptomic landscape of m6A in cancers using deep neural networks
    Yu, Boyi
    Nagae, Genta
    Midorikawa, Yutaka
    Tatsuno, Kenji
    Ota, Satoshi
    Aburatani, Hiroyuki
    Ueda, Hiroki
    CANCER SCIENCE, 2023, 114 : 2227 - 2227
  • [2] Revealing the epitranscriptomic landscape of m6A in cancers using deep neural networks
    Yu, Boyi
    Nagae, Genta
    Midorikawa, Yutaka
    Tatsuno, Kenji
    Dasgupta, Bhaskar
    Ota, Satoshi
    Aburatani, Hiroyuki
    Ueda, Hiroki
    CANCER SCIENCE, 2024, 115 : 1159 - 1159
  • [3] Revealing the epitranscriptomic landscape of m6A in hepatocellular carcinoma using deep neural networks
    Boyi, Yu
    Nagae, Genta
    Midorikawa, Yutaka
    Tatsuno, Kenji
    Ota, Satoshi
    Ueda, Hiroki
    Aburatani, Hiroyuki
    CANCER SCIENCE, 2022, 113 : 1793 - 1793
  • [4] Epitranscriptomic regulation by m6A RNA methylation in brain development and diseases
    Chokkalla, Anil K.
    Mehta, Suresh L.
    Vemuganti, Raghu
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2020, 40 (12): : 2331 - 2349
  • [5] Detection of m6A from direct RNA sequencing using a multiple instance learning framework
    Hendra, Christopher
    Pratanwanich, Ploy N.
    Wan, Yuk Kei
    Goh, W. S. Sho
    Thiery, Alexandre
    Goke, Jonathan
    NATURE METHODS, 2022, 19 (12) : 1590 - +
  • [6] Detection of m6A from direct RNA sequencing using a multiple instance learning framework
    Christopher Hendra
    Ploy N. Pratanwanich
    Yuk Kei Wan
    W. S. Sho Goh
    Alexandre Thiery
    Jonathan Göke
    Nature Methods, 2022, 19 : 1590 - 1598
  • [7] Benchmarking of computational methods for m6A profiling with Nanopore direct RNA sequencing
    Maestri, Simone
    Furlan, Mattia
    Mulroney, Logan
    Coscujuela Tarrero, Lucia
    Ugolini, Camilla
    Dalla Pozza, Fabio
    Leonardi, Tommaso
    Birney, Ewan
    Nicassio, Francesco
    Pelizzola, Mattia
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [8] HIV modifies the m6A and m5C epitranscriptomic landscape of the host cell
    Cristinelli, S.
    Angelino, P.
    Janowczyk, A.
    Delorenzi, M.
    Ciuffi, A.
    JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2021, 24 : 8 - 8
  • [9] HIV Modifies the m6A and m5C Epitranscriptomic Landscape of the Host Cell
    Cristinelli, Sara
    Angelino, Paolo
    Janowczyk, Andrew
    Delorenzi, Mauro
    Ciuffi, Angela
    FRONTIERS IN VIROLOGY, 2021, 1
  • [10] Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing
    Price, Alexander M.
    Hayer, Katharina E.
    McIntyre, Alexa B. R.
    Gokhale, Nandan S.
    Abebe, Jonathan S.
    Della Fera, Ashley N.
    Mason, Christopher E.
    Horner, Stacy M.
    Wilson, Angus C.
    Depledge, Daniel P.
    Weitzman, Matthew D.
    NATURE COMMUNICATIONS, 2020, 11 (01)