Global Spherically Symmetric Solutions of the Multidimensional Full Compressible Navier-Stokes Equations with Large Data

被引:0
|
作者
Chen, Gui-Qiang G. [1 ]
Huang, Yucong [2 ]
Zhu, Shengguo [3 ]
机构
[1] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
[2] Univ Edinburgh, Sch Math, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Scotland
[3] Shanghai Jiao Tong Univ, Sch Math Sci, CMA Shanghai, MOE LSC, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金; 国家重点研发计划;
关键词
WEAK SOLUTIONS; DISCONTINUOUS SOLUTIONS; CRITICAL SPACES; EXISTENCE; FLOWS; VACUUM; FLUIDS; UNIQUENESS; MOTION; GAS;
D O I
10.1007/s00205-024-02018-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the global-in-time existence of solutions of the Cauchy problem for the full Navier-Stokes equations for compressible heat-conducting flow in multidimensions with initial data that are large, discontinuous, spherically symmetric, and away from the vacuum. The solutions obtained here are of global finite total relative-energy including the origin, while cavitation may occur as balls centred at the origin of symmetry for which the interfaces between the fluid and the vacuum must be upper semi-continuous in space-time in the Eulerian coordinates. On any region strictly away from the possible vacuum, the velocity and specific internal energy are H & ouml;lder continuous, and the density has a uniform upper bound. To achieve this, our main strategy is to regard the Cauchy problem as the limit of a series of carefully designed initial-boundary value problems that are formulated in finite annular regions. For such approximation problems, we can derive uniform a priori estimates that are independent of both the inner and outer radii of the annuli considered in the spherically symmetric Lagrangian coordinates. The entropy inequality is recovered after taking the limit of the outer radius to infinity by using Mazur's lemma and the convexity of the entropy function, which is required for the limit of the inner radius tending to zero. Then the global weak solutions of the original problem are attained via careful compactness arguments applied to the approximate solutions in the Eulerian coordinates.
引用
收藏
页数:122
相关论文
共 50 条