Double-loop importance sampling for McKean-Vlasov stochastic differential equation

被引:1
|
作者
Ben Rached, Nadhir [1 ]
Haji-Ali, Abdul-Lateef [2 ]
Pillai, Shyam Mohan Subbiah [3 ]
Tempone, Raul [4 ,5 ]
机构
[1] Univ Leeds, Dept Stat, Sch Math, Leeds, England
[2] Heriot Watt Univ, Sch Math & Comp Sci, Dept Actuarial Math & Stat, Edinburgh, Scotland
[3] Rhein Westfal TH Aachen, Dept Math, Chair Math Uncertainty Quantificat, Aachen, Germany
[4] KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal, Saudi Arabia
[5] Rhein Westfal TH Aachen, Alexander von Humboldt Prof Math Uncertainty Quant, Aachen, Germany
关键词
McKean-Vlasov stochastic differential equation; Importance sampling; Rare events; Stochastic optimal control; Decoupling approach; Double loop Monte Carlo; KURAMOTO MODEL; SYNCHRONIZATION; APPROXIMATION; MULTILEVEL; SIMULATION; REDUCTION; SDES;
D O I
10.1007/s11222-024-10497-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper investigates Monte Carlo (MC) methods to estimate probabilities of rare events associated with the solution to the d-dimensional McKean-Vlasov stochastic differential equation (MV-SDE). MV-SDEs are usually approximated using a stochastic interacting P-particle system, which is a set of P coupled d-dimensional stochastic differential equations (SDEs). Importance sampling (IS) is a common technique for reducing high relative variance of MC estimators of rare-event probabilities. We first derive a zero-variance IS change of measure for the quantity of interest by using stochastic optimal control theory. However, when this change of measure is applied to stochastic particle systems, it yields a Pxd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \times d$$\end{document}-dimensional partial differential control equation (PDE), which is computationally expensive to solve. To address this issue, we use the decoupling approach introduced in (dos Reis et al. 2023), generating a d-dimensional control PDE for a zero-variance estimator of the decoupled SDE. Based on this approach, we develop a computationally efficient double loop MC (DLMC) estimator. We conduct a comprehensive numerical error and work analysis of the DLMC estimator. As a result, we show optimal complexity of OTOLr-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}\left( \textrm{TOL}_{\textrm{r}}<^>{-4}\right) $$\end{document} with a significantly reduced constant to achieve a prescribed relative error tolerance TOLr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{TOL}_{\textrm{r}}$$\end{document}. Subsequently, we propose an adaptive DLMC method combined with IS to numerically estimate rare-event probabilities, substantially reducing relative variance and computational runtimes required to achieve a given TOLr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{TOL}_{\textrm{r}}$$\end{document} compared with standard MC estimators in the absence of IS. Numerical experiments are performed on the Kuramoto model from statistical physics.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Importance sampling for McKean-Vlasov SDEs
    dos Reis, Goncalo
    Smith, Greig
    Tankov, Peter
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 453
  • [2] MULTIVALUED STOCHASTIC MCKEAN-VLASOV EQUATION
    池红梅
    Acta Mathematica Scientia, 2014, 34 (06) : 1731 - 1740
  • [3] Online parameter estimation for the McKean-Vlasov stochastic differential equation
    Sharrock, Louis
    Kantas, Nikolas
    Parpas, Panos
    Pavliotis, Grigorios A.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 162 : 481 - 546
  • [4] MULTIVALUED STOCHASTIC MCKEAN-VLASOV EQUATION
    Chi, Hongmei
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (06) : 1731 - 1740
  • [5] A GENERAL CONDITIONAL MCKEAN-VLASOV STOCHASTIC DIFFERENTIAL EQUATION br
    Buckdahn, Rainer
    Li, Juan
    Ma, Jin
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (03): : 2004 - 2023
  • [6] Multilevel importance sampling for rare events associated with the McKean-Vlasov equation
    Ben Rached, Nadhir
    Haji-Ali, Abdul-Lateef
    Pillai, Shyam Mohan Subbiah
    Tempone, Raul
    STATISTICS AND COMPUTING, 2025, 35 (01)
  • [7] STABILITY ANALYSIS FOR STOCHASTIC MCKEAN-VLASOV EQUATION
    Shi, C.
    Wang, W.
    ANZIAM JOURNAL, 2024,
  • [8] Maximum likelihood estimation of McKean-Vlasov stochastic differential equation and its application
    Wen, Jianghui
    Wang, Xiangjun
    Mao, Shuhua
    Xiao, Xinping
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 237 - 246
  • [9] A stochastic particle method for the McKean-Vlasov and the Burgers equation
    Bossy, M
    Talay, D
    MATHEMATICS OF COMPUTATION, 1997, 66 (217) : 157 - 192
  • [10] DYNAMICS OF THE MCKEAN-VLASOV EQUATION
    CHAN, T
    ANNALS OF PROBABILITY, 1994, 22 (01): : 431 - 441