Reconfigurable intelligent surface (RIS) has the potential to shape the wireless channel into an intelligent programmable wireless propagation environment. RIS-assisted millimeter wave (mmWave) technology is considered as a potential technology for sixth generation (6G) wireless communications. In this article, an RIS-assisted mmWave system is considered, and the corresponding physics-based channel model under the parabolic wavefront assumption, which is a second-order approximation to the spherical wavefront assumption, is established. Based on the parabolic wavefront assumption, the approximate closed-form expression of the direction-dependent Rayleigh distance is derived, which is a supplement to the classical Rayleigh distance. Also, the RIS reflection phase, consisting of a conventional far-field reflection phase and an addition near-field reflection phase, is obtained. The far-field phase compensates the phase variations from the mismatch in the azimuth and elevation angles, and the near-field phase compensates the phase variations caused by the distance differences from the transmitter/receiver to different RIS unit cells. Based on the conventional far-field reflection phase and the designed reflection phase, the received signal power is explored, and the approximate expressions are also obtained by using the Fresnel functions, which are validated by using numerical results. In addition, the numerical results show that the mmWave channel model under parabolic wavefront assumption and the corresponding near-field reflection phases are necessary to explore the RIS-assisted mmWave communication systems.