HybridViT: An Approach for Alzheimer’s Disease Classification with ADNI Neuroimaging Data

被引:0
|
作者
Vivek Sai Surya Chaitanya Tekumudi [1 ]
Annamalai Ramanathan [1 ]
机构
[1] Amrita School of Computing,Department of Computer Science and Engineering
[2] Amrita Vishwa Vidyapeetham,undefined
关键词
Alzheimer’s disease neuroimaging initiative (ADNI); Alzheimer’s disease (AD); HybridViT; Vision transformer; Pre-trained models;
D O I
10.1007/s42979-025-03862-0
中图分类号
学科分类号
摘要
Alzheimer’s disease (AD) is a prevalent neurological disorder characterized by progressive brain cell degeneration and atrophy, leading to a gradual decline in cognitive and functional abilities. Timely diagnosis is paramount in potentially delaying or preventing the course of this debilitating condition. Magnetic Resonance Imaging presents a non-invasive means for longitudinal monitoring and serves as a crucial biomarker for tracking disease progression. In particular, Structural Magnetic Resonance Imaging (sMRI) enables the quantification of atrophy, which is a reliable indicator for assessing the precise stage and severity of AD-related neurodegeneration. In this research, we employ advanced machine learning techniques to address the challenge of accurate and early diagnosis of AD. We utilize a comprehensive dataset comprising five stages of 2D sMRI Image data, encompassing AD, Cognitively Normal, Mild Cognitive Impairment, Early Mild Cognitive Impairment, and Late Mild Cognitive Impairment classes. To optimize the classification process, we explore a novel approach that combines a Vision Transformer with pre-trained convolutional neural networks. Our study includes binary and multi-class classification tasks, and the performance of 26 pre-trained Keras Deep Learning models is assessed. Notably, The DenseNet121+ViT model achieves 91.26% accuracy in multi-class classification. For binary classification, MobileNetV2+ViT, EfficientNetB4+ViT, and MobileNet+ViT achieve accuracies of 92.33%, 97.82%, and 94.81%, respectively. These results highlight our approach’s potential to improve AD diagnosis accuracy and underscore the importance of deep learning in early detection of neurological disorders.
引用
收藏
相关论文
共 50 条
  • [1] Navigating Neuroimaging Datasets ADNI for Alzheimer's Disease
    Chu, N. Nan
    Gebre-Amlak, Haymanot
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2021, 10 (05) : 61 - 63
  • [2] Alzheimer's Disease Neuroimaging Initiative (ADNI) Clinical characterization
    Petersen, R. C.
    Aisen, P. S.
    Beckett, L. A.
    Donohue, M. C.
    Gamst, A. C.
    Harvey, D. J.
    Jack, C. R., Jr.
    Jagust, W. J.
    Shaw, L. M.
    Toga, A. W.
    Trojanowski, J. Q.
    Weiner, M. W.
    NEUROLOGY, 2010, 74 (03) : 201 - 209
  • [3] The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods
    Jack, Clifford R., Jr.
    Bernstein, Matt A.
    Fox, Nick C.
    Thompson, Paul
    Alexander, Gene
    Harvey, Danielle
    Borowski, Bret
    Britson, Paula J.
    Whitwell, Jennifer L.
    Ward, Chadwick
    Dale, Anders M.
    Felmlee, Joel P.
    Gunter, Jeffrey L.
    Hill, Derek L. G.
    Killiany, Ron
    Schuff, Norbert
    Fox-Bosetti, Sabrina
    Lin, Chen
    Studholme, Colin
    DeCarli, Charles S.
    Krueger, Gunnar
    Ward, Heidi A.
    Metzger, Gregory J.
    Scott, Katherine T.
    Mallozzi, Richard
    Blezek, Daniel
    Levy, Joshua
    Debbins, Josef P.
    Fleisher, Adam S.
    Albert, Marilyn
    Green, Robert
    Bartzokis, George
    Glover, Gary
    Mugler, John
    Weiner, Michael W.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (04) : 685 - 691
  • [4] Bridging Representation Gaps in Big Data: An Alzheimer's Disease Neuroimaging Initiative (ADNI) Investigation
    Tureson, K.
    Gold, A., I
    Thames, A. D.
    ARCHIVES OF CLINICAL NEUROPSYCHOLOGY, 2019, 34 (07) : 1279 - 1279
  • [5] Neuropathologic Assessment of Alzheimer's Disease Neuroimaging Initiative (ADNI) Participants
    Cairns, Nigel
    Perrin, Richard
    Householder, Erin
    Carter, Deborah
    Vincent, Benjamin
    Morris, John
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2014, 73 (06): : 626 - 626
  • [6] Biomarkers of Alzheimer's disease in Black and/or African American Alzheimer's Disease Neuroimaging Initiative (ADNI) participants
    Groechel, Renee C.
    Tripodis, Yorghos
    Alosco, Michael L.
    Mez, Jesse
    Qiu, Wei Qiao
    Goldstein, Lee
    Budson, Andrew E.
    Kowall, Neil W.
    Shaw, Leslie M.
    Weiner, Michael
    Jack, Clifford R., Jr.
    Killiany, R. J.
    NEUROBIOLOGY OF AGING, 2023, 131 : 144 - 152
  • [7] Clusters of male and female Alzheimer’s disease patients in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
    Gamberger D.
    Ženko B.
    Mitelpunkt A.
    Shachar N.
    Lavrač N.
    Brain Informatics, 2016, 3 (3) : 169 - 179
  • [8] Measurement Precision Across Cognitive Domains in the Alzheimer's Disease Neuroimaging Initiative (ADNI) Data Set
    Crane, Paul K.
    Choi, Seo-Eun
    Lee, Michael
    Scollard, Phoebe
    Sanders, R. Elizabeth
    Klinedinst, Brandon
    Nakano, Connie
    Trittschuh, Emily H.
    Mez, Jesse
    Saykin, Andrew J.
    Gibbons, Laura E.
    Wang, Chun
    Mungas, Dan
    Zhu, Ruoyi
    Foldi, Nancy S.
    Lamar, Melissa
    Jutten, Roos
    Sikkes, Sietske A. M.
    Grandoit, Evan
    Rabin, Laura A.
    Jones, Richard N.
    Tommet, Doug
    Mukherjee, Shubhabrata
    NEUROPSYCHOLOGY, 2023, 37 (04) : 373 - 382
  • [9] Development and assessment of a composite score for memory in the Alzheimer's Disease Neuroimaging Initiative (ADNI)
    Crane, Paul K.
    Carle, Adam
    Gibbons, Laura E.
    Insel, Philip
    Mackin, R. Scott
    Gross, Alden
    Jones, Richard N.
    Mukherjee, Shubhabrata
    Curtis, S. McKay
    Harvey, Danielle
    Weiner, Michael
    Mungas, Dan
    BRAIN IMAGING AND BEHAVIOR, 2012, 6 (04) : 502 - 516
  • [10] Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
    Paul K. Crane
    Adam Carle
    Laura E. Gibbons
    Philip Insel
    R. Scott Mackin
    Alden Gross
    Richard N. Jones
    Shubhabrata Mukherjee
    S. McKay Curtis
    Danielle Harvey
    Michael Weiner
    Dan Mungas
    Brain Imaging and Behavior, 2012, 6 : 502 - 516