Benchmarking metagenomic binning tools on real datasets across sequencing platforms and binning modes

被引:0
|
作者
Han, Haitao [1 ,2 ]
Wang, Ziye [3 ,4 ]
Zhu, Shanfeng [1 ,2 ,5 ,6 ,7 ,8 ]
机构
[1] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai, Peoples R China
[2] Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai, Peoples R China
[3] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[4] Nankai Univ, LPMC, Tianjin, Peoples R China
[5] Fudan Univ, Minist Educ, Key Lab Computat Neurosci & Brain Inspired Intelli, Shanghai, Peoples R China
[6] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China
[7] Fudan Univ, Shanghai Inst Artificial Intelligence Algorithm, Shanghai, Peoples R China
[8] Zhangjiang Fudan Int Innovat Ctr, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
MINIMUM INFORMATION; GENES;
D O I
10.1038/s41467-025-57957-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metagenomic binning is a culture-free approach that facilitates the recovery of metagenome-assembled genomes by grouping genomic fragments. However, there remains a lack of a comprehensive benchmark to evaluate the performance of metagenomic binning tools across various combinations of data types and binning modes. In this study, we benchmark 13 metagenomic binning tools using short-read, long-read, and hybrid data under co-assembly, single-sample, and multi-sample binning, respectively. The benchmark results demonstrate that multi-sample binning exhibits optimal performance across short-read, long-read, and hybrid data. Moreover, multi-sample binning outperforms other binning modes in identifying potential antibiotic resistance gene hosts and near-complete strains containing potential biosynthetic gene clusters across diverse data types. This study also recommends three efficient binners across all data-binning combinations, as well as high-performance binners for each combination.
引用
收藏
页数:12
相关论文
共 19 条
  • [1] Evaluating metagenomics tools for genome binning with real metagenomic datasets and CAMI datasets
    Yue, Yi
    Huang, Hao
    Qi, Zhao
    Dou, Hui-Min
    Liu, Xin-Yi
    Han, Tian-Fei
    Chen, Yue
    Song, Xiang-Jun
    Zhang, You-Hua
    Tu, Jian
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [2] Evaluating metagenomics tools for genome binning with real metagenomic datasets and CAMI datasets
    Yi Yue
    Hao Huang
    Zhao Qi
    Hui-Min Dou
    Xin-Yi Liu
    Tian-Fei Han
    Yue Chen
    Xiang-Jun Song
    You-Hua Zhang
    Jian Tu
    BMC Bioinformatics, 21
  • [3] MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets
    Wu, Yu-Wei
    Simmons, Blake A.
    Singer, Steven W.
    BIOINFORMATICS, 2016, 32 (04) : 605 - 607
  • [4] Shotgun and Hi-C Sequencing Datasets for Binning Wheat Rhizosphere Microbiome
    Regmi, Roshan
    Anderson, Jonathan
    Burgess, Lauren
    Mangelson, Hayley
    Liachko, Ivan
    Vadakattu, Gupta
    SCIENTIFIC DATA, 2025, 12 (01)
  • [5] binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets
    Hickl, Oskar
    Queiros, Pedro
    Wilmes, Paul
    May, Patrick
    Heintz-Buschart, Anna
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
  • [6] Unsupervised Binning of Metagenomic Datasets Using Cluster Size Insensitive Fuzzy c-means Method
    Liu, Yu
    Liu, Fu
    Hou, Tao
    Wang, Ke
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3936 - 3939
  • [7] Selection of marker genes for genetic barcoding of microorganisms and binning of metagenomic reads by Barcoder software tools
    Adeola M. Rotimi
    Rian Pierneef
    Oleg N. Reva
    BMC Bioinformatics, 19
  • [8] Selection of marker genes for genetic barcoding of microorganisms and binning of metagenomic reads by Barcoder software tools
    Rotimi, Adeola M.
    Pierneef, Rian
    Reva, Oleg N.
    BMC BIOINFORMATICS, 2018, 19
  • [9] MBMC: An Effective Markov Chain Approach for Binning Metagenomic Reads from Environmental Shotgun Sequencing Projects
    Wang, Ying
    Hu, Haiyan
    Li, Xiaoman
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2016, 20 (08) : 470 - 479
  • [10] Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy
    Stefano Campanaro
    Laura Treu
    Panagiotis G. Kougias
    Davide De Francisci
    Giorgio Valle
    Irini Angelidaki
    Biotechnology for Biofuels, 9