Preparation of MIL-53(Cr) and MIL-101(Cr)/reduced graphene oxide/polyaniline composites for Cr(VI) adsorption

被引:0
|
作者
Zhuannian Liu [1 ]
Xiaolei Shi [1 ]
Benlong Wei [1 ]
Sheng Liao [1 ]
机构
[1] Xi’an University of Science and Technology,College of Geology and Environment
关键词
Adsorption; Metal organic framework; Reduced graphene oxide; Chromium; Wastewater;
D O I
10.1007/s10934-024-01707-4
中图分类号
学科分类号
摘要
The rapid development of industrialization has brought a series of difficulties and challenges to mankind, especially the heavy metal Cr(VI) pollution in water, which has become an important research topic. In the study, the reduced graphene oxide/polyaniline (rGO/PANI) material was synthetically synthesized by in-situ polymerization of polyaniline (PANI) with reduced graphene oxide (rGO) for adsorption of Cr(VI) in simulated wastewater. The Cr(VI) adsorbed on the layer of rGO/PANI utilized as metal ion center, MIL-53(Cr)/rGO/PANI (M-53/G-P) and MIL-101(Cr)/rGO/PANI (M-101/G-P) composites were prepared by hydrothermal method. The prepared composite adsorbs Cr(VI) again, and the composites were characterized by XRD, XPS, BET, and FTIR before and after adsorption, and the adsorption mechanism was elucidated by XPS. Results indicate: compared with rGO/PANI (38.98 m2·g−1), the M-53/G-P (137.87 m2·g−1) and M-101/G-P (70.91 m2·g−1) show higher BET surface area. When pH is 2, initial concentration is 100 mg L−1 and dosage is 0,10 g (per 100 mL), the maximum adsorption capacities of M-53/G-P and M-101/G-P composite materials for Cr(VI) are 81.58 and 77.76 mg·g−1, respectively. The adsorption kinetics of Cr(VI) on the two composites conform to the pseudo-second-order kinetic model and the adsorption isotherm follows the Freundlich model. The adsorption mechanisms of Cr(VI) by the two materials involve electrostatic attraction, ion exchange, and complexation. This study found that M-53/G-P has promising applications in removing contaminants and purifying wastewater compared to M-101/G-P.
引用
收藏
页码:353 / 364
页数:11
相关论文
共 50 条
  • [1] MOF/Al2O3 composites obtained by immobilization of MIL-53(Cr) or MIL-101(Cr) on ?-alumina: Preparation and characterization
    Grad, Oana
    Dan, Monica
    Barbu-Tudoran, Lucian
    Tosa, Nicoleta
    Lazar, Mihaela D.
    Blanita, Gabriela
    MICROPOROUS AND MESOPOROUS MATERIALS, 2023, 353
  • [2] Adsorption of Ethylbenzene from Air on Metal–Organic Frameworks MIL-101(Cr) and MIL-53(Fe) at Room Temperature
    Elnaz Jangodaz
    Ebrahim Alaie
    Ali Akbar Safekordi
    Saiedeh Tasharrofi
    Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28 : 2090 - 2099
  • [3] Comparative Study of Hydrogen Sulfide Adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) Metal-Organic Frameworks at Room Temperature
    Hamon, Lomig
    Serre, Christian
    Devic, Thomas
    Loiseau, Thierry
    Millange, Franck
    Ferey, Gerard
    De Weireld, Guy
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) : 8775 - +
  • [4] In-situ formation of NixB/MIL-101(Cr) and Pd/MIL-101(Cr) composites for catalytic hydrogenation of quinoline
    Asaula, V. M.
    Lytvynenko, A. S.
    Mishura, A. M.
    Kurmach, M. M.
    Buryanov, V. V.
    Gavrilenko, K. S.
    Ryabukhin, S., V
    Volochnyuk, D. M.
    Kolotilov, S., V
    INORGANIC CHEMISTRY COMMUNICATIONS, 2020, 121
  • [5] Preparation and CO2 breakthrough adsorption of MIL-101(Cr)-D composites
    Zhang, Xiao-tong
    Li, Fang-qin
    Ren, Jian-xing
    Guan, Zhen-zhen
    Zhang, Lin-jian
    Feng, Hai-jun
    Hou, Xin
    Ma, Chuang
    JOURNAL OF NANOPARTICLE RESEARCH, 2019, 21 (05)
  • [6] Hydrogen adsorption and kinetics in MIL-101(Cr) and hybrid activated carbon-MIL-101(Cr) materials
    Yu, Zhewei
    Deschamps, Johnny
    Hamon, Lomig
    Prabhakaran, Prasanth Karikkethu
    Pre, Pascaline
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (12) : 8021 - 8031
  • [7] Preparation and CO2 breakthrough adsorption of MIL-101(Cr)-D composites
    Xiao-tong Zhang
    Fang-qin Li
    Jian-xing Ren
    Zhen-zhen Guan
    Lin-jian Zhang
    Hai-jun Feng
    Xin Hou
    Chuang Ma
    Journal of Nanoparticle Research, 2019, 21
  • [8] Hybrid MIL-101( Cr)@ MIL-53( Al) composite for carbon dioxide capture from biogas
    Taheri, Armin
    Babakhani, Ensieh Ganji
    Darian, Jafar Towfighi
    Pakseresht, Saeed
    RSC ADVANCES, 2019, 9 (26) : 15141 - 15150
  • [9] Adsorption of Ethylbenzene from Air on Metal-Organic Frameworks MIL-101(Cr) and MIL-53(Fe) at Room Temperature
    Jangodaz, Elnaz
    Alaie, Ebrahim
    Safekordi, Ali Akbar
    Tasharrofi, Saiedeh
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2018, 28 (05) : 2090 - 2099
  • [10] Water Desalination by Pervaporation Using MIL-101(Cr) and MIL-101(Cr)@GODoped PVA Hybrid Membranes
    Unlu, Derya
    WATER AIR AND SOIL POLLUTION, 2023, 234 (02):