LOOC: Localizing Organs Using Occupancy Networks and Body Surface Depth Images

被引:0
|
作者
Henrich, Pit [1 ]
Mathis-Ullrich, Franziska [1 ]
机构
[1] Friedrich-Alexander-University Erlangen-Nürnberg, Department of Artificial Intelligence in Biomedical Engineering, Erlangen,91052, Germany
关键词
Computer vision - Depth perception - Electronic health record - Noninvasive medical procedures;
D O I
10.1109/ACCESS.2025.3543736
中图分类号
学科分类号
摘要
We introduce a novel approach for the precise localization of 67 anatomical structures from single depth images captured from the exterior of the human body. Our method uses a multi-class occupancy network, trained using segmented CT scans augmented with body-pose changes, and incorporates a specialized sampling strategy to handle densely packed internal organs. Our contributions include the application of occupancy networks for occluded structure localization, a robust method for estimating anatomical positions from depth images, and the creation of detailed, individualized 3D anatomical atlases. We outperform localization using template matching and provide qualitative real-world reconstructions. This method promises improvements in automated medical imaging and diagnostic procedures by offering accurate, non-invasive localization of critical anatomical structures. © 2025 The Authors.
引用
收藏
页码:36930 / 36938
相关论文
共 50 条
  • [1] LOCALIZING BODY JOINTS FROM SINGLE DEPTH IMAGES USING GEODETIC DISTANCES AND RANDOM TREE WALK
    Handrich, Sebastian
    Al-Hamadi, Ayoub
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 146 - 150
  • [2] A Skeleton-Free Body Surface Area Estimation from Depth Images using Deep Neural Networks
    Nahavandi, D.
    Abobakr, A.
    Haggag, H.
    Hossny, M.
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 2707 - 2711
  • [3] Body condition estimation on cows from depth images using Convolutional Neural Networks
    Rodriguez Alvarez, Juan
    Arroqui, Mauricio
    Mangudo, Pablo
    Toloza, Juan
    Jatip, Daniel
    Rodriguez, Juan M.
    Teyseyre, Alfredo
    Sanz, Carlos
    Zunino, Alejandro
    Machado, Claudio
    Mateos, Cristian
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 155 : 12 - 22
  • [4] Localizing Anatomical Landmarks in Ocular Images Using Zoom-In Attentive Networks
    Lei, Xiaofeng
    Li, Shaohua
    Xu, Xinxing
    Fu, Huazhu
    Liu, Yong
    Tham, Yih-Chung
    Feng, Yangqin
    Tan, Mingrui
    Xu, Yanyu
    Goh, Jocelyn Hui Lin
    Goh, Rick Siow Mong
    Cheng, Ching-Yu
    OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2022, 2022, 13576 : 94 - 104
  • [5] Fitting a Deformable 3D Human Body Model to Depth Images using Convolutional Neural Networks
    Zeitvogel, Samuel
    Laubenheimer, Astrid
    2016 12TH IEEE INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND TELECOMMUNICATIONS (ISETC'16), 2016, : 321 - 326
  • [6] Estimating Body Pose of Infants in Depth Images using Random Ferns
    Hesse, Nikolas
    Stachowiak, Gregor
    Breuer, Timo
    Arens, Michael
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 427 - 435
  • [7] Estimating body weight and body condition score of mature beef cows using depth images
    Xiong, Yijie
    Condotta, Isabella C. F. S.
    Musgrave, Jacki A.
    Brown-Brandl, Tami M.
    Mulliniks, J. Travis
    TRANSLATIONAL ANIMAL SCIENCE, 2023, 7 (01)
  • [8] Localizing salient body motion in multi-person scenes using convolutional neural networks
    Letsch, Florian
    Jirak, Doreen
    Wermter, Stefan
    NEUROCOMPUTING, 2019, 330 : 449 - 464
  • [9] Estimating body animation parameters from depth images using analysis by synthesis
    Grammalidis, N
    Goussis, G
    Troufakos, G
    Strintzis, MG
    SECOND INTERNATIONAL WORKSHOP ON DIGITAL AND COMPUTATIONAL VIDEO, PROCEEDINGS, 2001, : 93 - 100
  • [10] Depth of general scenes from defocused images using multilayer feedforward networks
    Aslantas, Veysel
    Tunckanat, Mehmet
    ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS, 2006, 3949 : 41 - 48