QSegRNN: quantum segment recurrent neural network for time series forecasting

被引:0
|
作者
Kyeong-Hwan Moon [1 ]
Seon-Geun Jeong [2 ]
Won-Joo Hwang [1 ]
机构
[1] Pusan National University,School of Computer Science and Engineering
[2] Pusan National University,Department of Information Convergence Engineering
关键词
Quantum–classical neural networks; Quantum encoding; Quantum machine learning; Time series forecasting; Variational quantum circuits;
D O I
10.1140/epjqt/s40507-025-00333-6
中图分类号
学科分类号
摘要
Recently many data centers have been constructed for artificial intelligence (AI) research. The important condition of the data center is to supply sufficient electricity, resulting in many electricity transformers being installed. Especially, these electricity transformers have led to significant heat generation in many data centers. Therefore, managing the temperature of electricity transformers has emerged as an important task. Notably, numerous studies are being conducted to manage and forecast the temperature of electricity transformers using artificial intelligence models. However, as the size of predictive models increases and computational demands grow, substantial computing resources are required. Consequently, there are instances where the lack of computing resources makes these models difficult to operate. To address these challenges, we propose a quantum segment recurrent neural network (QSegRNN), a time series forecasting model utilizing quantum computing. QSegRNN leverages quantum computing to achieve comparable performance with fewer parameters than classical counterpart models under similar conditions. QSegRNN inspired by a classical SegRNN uses the quantum cell instead of the classical cell in the model. The advantage of this structure is that it can be designed with fewer parameters under similar architecture. To construct the quantum cell, we benchmark the quantum convolutional circuit with amplitude embedding as the variational quantum circuit, minimizing information loss while considering the limit of noisy intermediate-scale quantum (NISQ) devices. The experiment result illustrates that the forecasting performance of QSegRNN achieves better performance than SegRNN and other forecasting models even though QSegRNN has only 85 percent of the parameters.
引用
收藏
相关论文
共 50 条
  • [1] A new hybrid recurrent artificial neural network for time series forecasting
    Egrioglu, Erol
    Bas, Eren
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03): : 2855 - 2865
  • [2] Linguistic time series forecasting using fuzzy recurrent neural network
    Aliev, R. A.
    Fazlollahi, B.
    Aliev, R. R.
    Guirimov, B.
    SOFT COMPUTING, 2008, 12 (02) : 183 - 190
  • [3] Linguistic time series forecasting using fuzzy recurrent neural network
    R. A. Aliev
    B. Fazlollahi
    R. R. Aliev
    B. Guirimov
    Soft Computing, 2008, 12 : 183 - 190
  • [4] A new hybrid recurrent artificial neural network for time series forecasting
    Erol Egrioglu
    Eren Bas
    Neural Computing and Applications, 2023, 35 : 2855 - 2865
  • [5] Recurrent Neural Network For Forecasting Time Series With Long Memory Pattern
    Walid
    Alamsyah
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICS, SCIENCE AND EDUCATION 2016, 2017, 824
  • [6] Implementation Of Recurrent Neural Network And Boosting Method For Time-Series Forecasting
    Soelaiman, Rully
    Martoyo, Arief
    Purwananto, Yudhi
    Purnomo, Mauridhi H.
    ICICI-BME: 2009 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, COMMUNICATION, INFORMATION TECHNOLOGY, AND BIOMEDICAL ENGINEERING, 2009, : 55 - +
  • [7] Graph correlated attention recurrent neural network for multivariate time series forecasting
    Geng, Xiulin
    He, Xiaoyu
    Xu, Lingyu
    Yu, Jie
    INFORMATION SCIENCES, 2022, 606 : 126 - 142
  • [8] Recurrent dendritic neuron model artificial neural network for time series forecasting
    Egrioglu, Erol
    Bas, Eren
    Chen, Mu-Yen
    INFORMATION SCIENCES, 2022, 607 : 572 - 584
  • [9] A Recurrent Neural Network based Generative Adversarial Network for Long Multivariate Time Series Forecasting
    Tang, Peiwang
    Zhang, Qinghua
    Zhang, Xianchao
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 181 - 189
  • [10] Time Series Forecasting with Quantum Neural Networks
    Cuellar, M. P.
    Pegalajar, M. C.
    Ruiz, L. G. B.
    Cano, C.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 : 666 - 677