CompositIA: an open-source automated quantification tool for body composition scores from thoraco-abdominal CT scans

被引:0
|
作者
Cabini, Raffaella Fiamma [1 ,2 ]
Cozzi, Andrea [3 ]
Leu, Svenja [3 ]
Thelen, Benedikt [1 ]
Krause, Rolf [1 ,2 ]
Del Grande, Filippo [3 ,4 ]
Pizzagalli, Diego Ulisse [1 ,2 ,4 ]
Rizzo, Stefania Maria Rita [3 ,4 ]
机构
[1] Univ Svizzera italiana, Euler Inst, Lugano, Switzerland
[2] Int Ctr Adv Comp Med ICAM, Pavia, Italy
[3] Ente Osped Cantonale, Imaging Inst Southern Switzerland, Lugano, Switzerland
[4] Univ Svizzera italiana, Fac Biomed Sci, Lugano, Switzerland
关键词
Body composition; Computed tomography; Deep learning; Open-source software; Segmentation; MUSCLE;
D O I
10.1186/s41747-025-00552-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Body composition scores allow for quantifying the volume and physical properties of specific tissues. However, their manual calculation is time-consuming and prone to human error. This study aims to develop and validate CompositIA, an automated, open-source pipeline for quantifying body composition scores from thoraco-abdominal computed tomography (CT) scans. Methods: A retrospective dataset of 205 contrast-enhanced thoraco-abdominal CT examinations was used for training, while 54 scans from a publicly available dataset were used for independent testing. Two radiology residents performed manual segmentation, identifying the centers of the L1 and L3 vertebrae and segmenting the corresponding axial slices. MultiResUNet was used to identify CT slices intersecting the L1 and L3 vertebrae, and its performance was evaluated using the mean absolute error (MAE). Two U-nets were used to segment the axial slices, with performance evaluated through the volumetric Dice similarity coefficient (vDSC). CompositIA's performance in quantifying body composition indices was assessed using mean percentage relative error (PRE), regression, and Bland-Altman analyses. Results: On the independent dataset, CompositIA achieved a MAE of about 5 mm in detecting slices intersecting the L1 and L3 vertebrae, with a MAE < 10 mm in at least 85% of cases and a vDSC greater than 0.85 in segmenting axial slices. Regression and Bland-Altman analyses demonstrated a strong linear relationship and good agreement between automated and manual scores (p values < 0.001 for all indices), with mean PREs ranging from 5.13% to 15.18%. Conclusion: CompositIA facilitated the automated quantification of body composition scores, achieving high precision in independent testing.
引用
收藏
页数:12
相关论文
共 20 条
  • [1] Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning
    Weston, Alexander D.
    Korfiatis, Panagiotis
    Kline, Timothy L.
    Philbrick, Kenneth A.
    Kostandy, Petro
    Sakinis, Tomas
    Sugimoto, Motokazu
    Takahashi, Naoki
    Erickson, Bradley J.
    RADIOLOGY, 2019, 290 (03) : 669 - 679
  • [2] An Automated Tool for Generating Change Report from Open-Source Software
    Malhotra, Ruchika
    Bansal, Ankita
    Jajoria, Sourabh
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 1576 - 1582
  • [3] JavaCyte, a novel open-source tool for automated quantification of key hallmarks of cardiac structural remodeling
    J. Winters
    M. Edler von Braunmuhl
    S. Zeemering
    M. Gilbers
    T. Ten Brink
    B. Scaf
    E. Guasch
    L. Mont
    M. Batlle
    M. Sinner
    S. Hatem
    M. K. Mansour
    L. Fabritz
    L. C. Sommerfeld
    P. Kirchhof
    A. Isaacs
    M. Stoll
    U. Schotten
    S. Verheule
    Scientific Reports, 10
  • [4] Development of automated quantification of visceral and subcutaneous adipose tissue volumes from abdominal CT scans
    Mensink, Sanne D.
    Spliethoff, Jarich W.
    Belder, Ruben
    Klaase, Joost M.
    Bezooijen, Roland
    Slump, Cornelis H.
    MEDICAL IMAGING 2011: COMPUTER-AIDED DIAGNOSIS, 2011, 7963
  • [5] Java']JavaCyte, a novel open-source tool for automated quantification of key hallmarks of cardiac structural remodeling
    Winters, J.
    von Braunmuhl, M. Edler
    Zeemering, S.
    Gilbers, M.
    Ten Brink, T.
    Scaf, B.
    Guasch, E.
    Mont, L.
    Batlle, M.
    Sinner, M.
    Hatem, S.
    Mansour, M. K.
    Fabritz, L.
    Sommerfeld, L. C.
    Kirchhof, P.
    Isaacs, A.
    Stoll, M.
    Schotten, U.
    Verheule, S.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Automated abdominal CT contrast phase detection using an interpretable and open-source artificial intelligence algorithm
    Reis, Eduardo Pontes
    Blankemeier, Louis
    Chaves, Juan Manuel Zambrano
    Jensen, Malte Engmann Kjeldskov
    Yao, Sally
    Truyts, Cesar Augusto Madid
    Willis, Marc H.
    Amaro, Edson
    Adams, Scott
    Boutin, Robert D.
    Chaudhari, Akshay S.
    EUROPEAN RADIOLOGY, 2024, 34 (10) : 6680 - 6687
  • [7] Normscan: open-source Python']Python software to create average models from CT scans
    Nahass, George R.
    Marques, Mitchell A.
    Bou Zeid, Naji
    Zhao, Linping
    Alkureishi, Lee W. T.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2025, 20 (01) : 157 - 165
  • [8] An Open-Source Computer Vision Tool for Automated Vocal Fold Tracking From Videoendoscopy
    Adamian, Nat
    Naunheim, Matthew R.
    Jowett, Nate
    LARYNGOSCOPE, 2021, 131 (01): : E219 - E225
  • [9] AUTOMATED MEASUREMENTS OF BODY COMPOSITION IN ABDOMINAL CT SCANS USING DEEP LEARNING CAN PREDICT SURVIVAL IN PATIENTS WITH CIRRHOSIS
    Zou, Winnie
    Enchakalody, Binu
    Shah, Nidhi
    Zhang, Peng
    Su, Grace L.
    HEPATOLOGY, 2020, 72 : 790A - 790A
  • [10] Automated Measurements of Body Composition in Abdominal CT Scans Using Artificial Intelligence Can Predict Mortality in Patients With Cirrhosis
    Zou, Winnie Y.
    Enchakalody, Binu E.
    Zhang, Peng
    Shah, Nidhi
    Saini, Sameer D.
    Wang, Nicholas C.
    Wang, Stewart C.
    Su, Grace L.
    HEPATOLOGY COMMUNICATIONS, 2021, 5 (11) : 1901 - 1910