The polyhedral geometry of truthful auctions

被引:0
|
作者
Joswig, Michael [1 ,2 ]
Klimm, Max [3 ]
Spitz, Sylvain [3 ]
机构
[1] Tech Univ Berlin, Discrete Math Geometry, Str 17 Juni 136, D-10623 Berlin, Germany
[2] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[3] Tech Univ Berlin, Discrete Optimizat, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
MULTIDIMENSIONAL MECHANISM DESIGN; COMBINATORIAL AUCTIONS; MONOTONICITY; ALGORITHMS;
D O I
10.1007/s10107-024-02168-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The difference set of an outcome in an auction is the set of types that the auction mechanism maps to the outcome. We give a complete characterization of the geometry of the difference sets that can appear for a dominant strategy incentive compatible multi-unit auction showing that they correspond to regular subdivisions of the unit cube. Similarly, we describe the geometry for affine maximizers for n players and m items, showing that they correspond to regular subdivisions of the m-fold product of (n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)$$\end{document}-dimensional simplices. These observations are then used to construct mechanisms that are robust in the sense that the sets of items allocated to the players change only slightly when the players' reported types are changed slightly.
引用
收藏
页码:539 / 566
页数:28
相关论文
共 50 条
  • [1] The Polyhedral Geometry of Truthful Auctions
    Joswig, Michael
    Klimm, Max
    Spitz, Sylvain
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2023, 2023, 13904 : 231 - 245
  • [2] The polyhedral geometry of truthful auctionsThe polyhedral geometry of truthful...M. Joswig et al.
    Michael Joswig
    Max Klimm
    Sylvain Spitz
    Mathematical Programming, 2025, 210 (1) : 539 - 566
  • [3] Truthful and competitive double auctions
    Deshmukh, K
    Goldberg, AV
    Hartline, JD
    Karlin, AR
    ALGORITHMS-ESA 2002, PROCEEDINGS, 2002, 2461 : 361 - 373
  • [4] Truthful auctions with optimal profit
    Lu, Pinyan
    Teng, Shang-Hua
    Yu, Changyuan
    INTERNET AND NETWORK ECONOMICS, PROCEEDINGS, 2006, 4286 : 27 - +
  • [5] Truthful Outcomes from Non-Truthful Position Auctions
    Dutting, Paul
    Fischer, Felix
    Parkes, David C.
    EC'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2016, : 813 - 813
  • [6] Towards a characterization of truthful combinatorial auctions
    Lavi, R
    Mu'alem, A
    Nisan, N
    44TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2003, : 574 - 583
  • [7] Truthful Bundle/Multiunit Double Auctions
    Chu, Leon Yang
    MANAGEMENT SCIENCE, 2009, 55 (07) : 1184 - 1198
  • [8] Truthful randomized mechanisms for combinatorial auctions
    Dobzinski, Shahar
    Nisan, Noam
    Schapira, Michael
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (01) : 15 - 25
  • [9] Truthful Spectrum Auctions With Approximate Revenue
    Al-Ayyoub, Mahmoud
    Gupta, Himanshu
    2011 PROCEEDINGS IEEE INFOCOM, 2011, : 2813 - 2821
  • [10] Separating the Communication Complexity of Truthful and Non-truthful Combinatorial Auctions
    Assadi, Sepehr
    Khandeparkar, Hrishikesh
    Saxena, Raghuvansh R.
    Weinberg, S. Matthew
    PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 1073 - 1085