Optimal Control Synthesis in a Ramsey-Type Model

被引:0
|
作者
Trusov, N. V. [1 ,2 ]
Shananin, A. A. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia
[2] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
[3] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Ramsey-type model; imperfect consumer loan market; optimal control synthesis; maximum principle; mathematical modeling;
D O I
10.1134/S0965542524701112
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mathematical description of the economic behavior of a representative household in an imperfect market of consumer loans and deposits is studied. The model is formalized as a finite-horizon optimal control problem. A classification of the behavior of social layers depending on market condition parameters is obtained. An infinite-horizon optimal control synthesis is constructed.
引用
收藏
页码:1939 / 1973
页数:35
相关论文
共 50 条
  • [41] Necessary and sufficient conditions for representative individual existence in a Ramsey-type model
    Gimaltdinov I.F.
    Moscow University Computational Mathematics and Cybernetics, 2013, 37 (2) : 70 - 76
  • [42] Ramsey-Type and Amalgamation-Type Properties of Permutations
    Jelinek, Vit
    SURVEYS IN COMBINATORICS 2017, 2017, 440 : 272 - 311
  • [43] The Ramsey-type version of a problem of Pomerance and Schinzel
    Pach, Peter Pal
    ACTA ARITHMETICA, 2012, 156 (01) : 1 - 5
  • [44] A New Lower Bound For A Ramsey-Type Problem
    Benny Sudakov*
    Combinatorica, 2005, 25 : 487 - 498
  • [45] Ramsey-Type Results for Geometric Graphs, I
    G. Károlyi
    J. Pach
    G. Tóth
    Discrete & Computational Geometry, 1997, 18 : 247 - 255
  • [46] A RAMSEY-TYPE RESULT FOR CONVEX-SETS
    LARMAN, D
    MATOUSEK, J
    PACH, J
    TOROCSIK, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 132 - 136
  • [47] Using Ultrafilters to Prove Ramsey-type Theorems
    Fernandez-Breton, David J.
    AMERICAN MATHEMATICAL MONTHLY, 2022, 129 (02): : 116 - 132
  • [48] ON RAMSEY-TYPE PROPERTIES OF THE DISTANCE IN NONSEPARABLE SPHERES
    Koszmider, Piotr
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 378 (04) : 2477 - 2515
  • [49] Ramsey-type results for geometric graphs, II
    Karolyi, G
    Pach, J
    Toth, G
    Valtr, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 20 (03) : 375 - 388
  • [50] Tight bounds on additive Ramsey-type numbers
    Cwalina, Karol
    Schoen, Tomasz
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 601 - 620