Young-Type Matrix Units for Non-Propagating Partition Algebra Submodules

被引:0
|
作者
John M. Campbell [1 ]
机构
[1] York University,Department of Mathematics and Statistics
[2] Dalhousie University,Department of Mathematics and Statistics
关键词
Semisimple algebra; matrix unit; partition algebra; partition diagram; semimodular lattice; Primary 16D60; Secondary 05E10; 20C30;
D O I
10.1007/s00025-024-02333-x
中图分类号
学科分类号
摘要
We construct bases of Young-type matrix units for all irreducible, non-propagating representations for partition algebras. In contrast to Halverson and Ram’s application of Bourbaki’s basic construction, our matrix units are not constructed recursively from smaller-order partition algebras, and our explicit construction for non-propagating matrix units is by direct analogy with Young’s classical construction for symmetric group algebra matrix units. Our matrix unit bases, which we construct using the semimodularity of partition lattices and define via an analogue of Young’s idempotent γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-elements, cannot be obtained from Enyang’s seminormal form for individual isomorphic copies of the irreducible representations of partition algebras.
引用
下载
收藏
相关论文
共 3 条
  • [1] Young-type inequalities and their matrix analogues
    Alzer, Horst
    da Fonseca, Carlos M.
    Kovacec, Alexander
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (03): : 622 - 635
  • [2] Matrix units and primitive idempotents for the Hecke algebra of type Dn
    Hu, Jun
    Wang, Shixuan
    Sun, Huanmei
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (04)
  • [3] FATIGUE-STRENGTH IN LONG LIFE RANGE AND NON-PROPAGATING FATIGUE CRACK IN SUS-304-TYPE STAINLESS-STEEL
    HATANAKA, K
    SHIMIZU, S
    BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1982, 25 (210): : 1859 - 1866