String moduli spaces and parabolic factorizations

被引:0
|
作者
Aspinwall, Paul S. [1 ,2 ]
机构
[1] Duke Univ, Dept Math, Box 90320, Durham, NC 27708 USA
[2] Duke Univ, Dept Phys, Box 90320, Durham, NC 27708 USA
来源
关键词
Conformal Field Models in String Theory; Extended Supersymmetry; Superstrings and Heterotic Strings; Supersymmetry and Duality;
D O I
10.1007/JHEP03(2025)012
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The symmetric spaces that appear as moduli spaces in string theory and supergravity can be decomposed with explicit metrics using parabolic subgroups. The resulting isometry between the original moduli space and this decomposition can be used to find parametrizations of the moduli. One application is to determine the volume parameter in conformal field moduli spaces for K3 surfaces. Other applications involve simple Dynkin diagram manipulations inducing "going up and down" between symmetric spaces by adding parameters and going to limits respectively. For supersymmetries such as N = 6, this involves combinatorics of less familiar "restricted" Dynkin diagrams.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Rationality of moduli spaces of parabolic bundles
    Boden, HU
    Yokogawa, K
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 : 461 - 478
  • [2] Hyperpolygon spaces and moduli spaces of parabolic Higgs bundles
    Godinho, Leonor
    Mandini, Alessia
    ADVANCES IN MATHEMATICS, 2013, 244 : 465 - 532
  • [3] String loop corrected hypermultiplet moduli spaces
    Llana, DR
    Saueressig, F
    Vandoren, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (03):
  • [4] ON OPERAD STRUCTURES OF MODULI SPACES AND STRING THEORY
    KIMURA, T
    STASHEFF, J
    VORONOV, AA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (01) : 1 - 25
  • [5] DIFFERENTIAL FORMS ON MODULI SPACES OF PARABOLIC BUNDLES
    Bottacin, Francesco
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (06) : 1779 - 1795
  • [6] SYZ duality for parabolic Higgs moduli spaces
    Biswas, Indranil
    Dey, A.
    NUCLEAR PHYSICS B, 2012, 862 (01) : 327 - 340
  • [7] Poincaré polynomial of the moduli spaces of parabolic bundles
    Yogish I. Holla
    Proceedings Mathematical Sciences, 2000, 110 : 233 - 261
  • [8] On Automorphisms of Moduli Spaces of Parabolic Vector Bundles
    Araujo, Carolina
    Fassarella, Thiago
    Kaur, Inder
    Massarenti, Alex
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (03) : 2261 - 2283
  • [9] Poincare polynomial of the moduli spaces of parabolic bundles
    Holla, YI
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2000, 110 (03): : 233 - 261