A prediction of mutations in infectious viruses using artificial intelligence

被引:0
|
作者
Won Jong Choi [1 ]
Jongkeun Park [2 ]
Do Young Seong [2 ]
Dae Sun Chung [1 ]
Dongwan Hong [2 ]
机构
[1] The Catholic University of Korea,Department of Precision Medicine and Big Data, College of Medicine
[2] The Catholic University of Korea,Department of Medical Informatics
[3] The Catholic University of Korea,Department of Medical Sciences, Graduate Schoolof, College of Medicine
[4] The Catholic University of Korea,Precision Medicine Research Center, College of Medicine
[5] The Catholic University of Korea,Cancer Evolution Research Center, College of Medicine
[6] CMC Institute for Basic Medical Science,College of Medicine
[7] The Catholic University of Korea,undefined
关键词
Machine learning; Deep learning; SARS-CoV-2; Clade; Mutation; Prediction;
D O I
10.1186/s44342-024-00019-y
中图分类号
学科分类号
摘要
Many subtypes of SARS-CoV-2 have emerged since its early stages, with mutations showing regional and racial differences. These mutations significantly affected the infectivity and severity of the virus. This study aimed to predict the mutations that occur during the evolution of SARS-CoV-2 and identify the key characteristics for making these predictions. We collected and organized data on the lineage, date, clade, and mutations of SARS-CoV-2 from publicly available databases and processed them to predict the mutations. In addition, we utilized various artificial intelligence models to predict newly emerging mutations and created various training sets based on clade information. Using only mutation information resulted in low performance of the learning models, whereas incorporating clade differentiation resulted in high performance in machine learning models, including XGBoost (accuracy: 0.999). However, mutations fixed in the receptor-binding motif (RBM) region of Omicron resulted in decreased predictive performance. Using these models, we predicted potential mutation positions for 24C, following the recently emerged 24A and 24B clades. We identified a mutation at position Q493 in the RBM region. Our study developed effective artificial intelligence models and characteristics for predicting new mutations in continuously evolving infectious viruses.
引用
收藏
相关论文
共 50 条
  • [1] Stroke Prediction using Artificial Intelligence
    Singh, M. Sheetal
    Choudhary, Prakash
    2017 8TH ANNUAL INDUSTRIAL AUTOMATION AND ELECTROMECHANICAL ENGINEERING CONFERENCE (IEMECON), 2017, : 158 - 161
  • [2] Electricity consumption prediction using artificial intelligence
    Tomaž Čegovnik
    Andrej Dobrovoljc
    Janez Povh
    Matic Rogar
    Pavel Tomšič
    Central European Journal of Operations Research, 2023, 31 (3) : 833 - 851
  • [3] Vehicle Action Prediction Using Artificial Intelligence
    Meng, Kevin
    Shi, Cheng
    Meng, Yu
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1231 - 1236
  • [4] Electricity consumption prediction using artificial intelligence
    Cegovnik, Tomaz
    Dobrovoljc, Andrej
    Povh, Janez
    Rogar, Matic
    Tomsic, Pavel
    CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2023, 31 (03) : 833 - 851
  • [5] Home Dialysis Prediction Using Artificial Intelligence
    Monaghan, Caitlin K.
    Willetts, Joanna
    Han, Hao
    Chaudhuri, Sheetal
    Ficociello, Linda H.
    Kraus, Michael A.
    Giles, Harold E.
    Usvyat, Len
    Turk, Joseph
    KIDNEY MEDICINE, 2025, 7 (02)
  • [6] Prediction of Temperature in WSN Using Artificial Intelligence
    Formanek, L.
    Chochul, M.
    Karpis, O.
    SENSORS AND ELECTRONIC INSTRUMENTATION ADVANCES (SEIA' 19), 2019, : 126 - 129
  • [7] Prediction of Marathon Performance using Artificial Intelligence
    Lerebourg, Lucie
    Saboul, Damien
    Clemencon, Michel
    Coquart, Jeremy Bernard
    INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 2023, 44 (05) : 352 - 360
  • [8] ENERGY REQUIREMENT PREDICTION USING ARTIFICIAL INTELLIGENCE
    Raj, Y. Naveen
    INTERNATIONAL JOURNAL OF LIFE SCIENCE AND PHARMA RESEARCH, 2019, : 53 - 58
  • [9] Prediction of Stock Market Using Artificial Intelligence
    Shah, Hemil N.
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [10] Crime Prediction Application Using Artificial Intelligence
    Patil, Archit P.
    Nawal, Devansh Jain
    Jain, Dipika
    PROCEEDINGS OF ICETIT 2019: EMERGING TRENDS IN INFORMATION TECHNOLOGY, 2020, 605 : 236 - 243