A Novel Mesalamine Loaded Hybrid Nanoparticle-in-Microparticle for Colon Targeting: In-vitro and In-vivo Investigations

被引:0
|
作者
Gautam, Preety [1 ]
Akhter, Md Habban [1 ]
Anand, Anubhav [2 ]
机构
[1] DIT Univ, Sch Pharmaceut & Populat Hlth Informat SoPPHI, Divers Rd, Makka Wala 248009, Uttarakhand, India
[2] Hygia Inst Pharmaceut Educ & Res HIPER, Dept Pharmaceut, Ghaila Rd, Lucknow 226020, Uttar Pradesh, India
关键词
Nanoparticle-in-microparticle; Nanoparticles; Ethyl cellulose; Eudragit L100; Eudragit S100; Colon targeting; Ulcerative colitis; Inflammatory bowel disease; Dual coating approach; Hybrid system; System-within-system; INFLAMMATORY-BOWEL-DISEASE; ULCERATIVE-COLITIS; PH; FORMULATION; DELIVERY; MICROSPHERES; OPTIMIZATION; COMBINATION; MESALAZINE; BEADS;
D O I
10.1007/s12247-024-09882-2
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Purpose Pharmaceutical research continues to focus on developing novel approaches for the effective treatment of ulcerative colitis (UC). To develop a better system than simple nanoparticle-in-microparticle (NP-in-MP), time-dependent NP or MP, and pH-dependent NP or MP, this work sought to construct an enhanced colon-targeting system with a combination of hybrid formulations and dual coating approach consisting of time-dependent nanoparticles loaded in pH-dependent microparticles. Method The model drug used was mesalamine, and the polymers used were ethyl cellulose (EC) as time dependent polymer and a mixture of Eudragit L100 (EL100) and Eudragit S100 (ES100) as pH dependent polymer. The NP-in-MP were optimized, prepared and characterized to obtain targeted and sustained delivery of drug. The NP were coated with ethyl cellulose to obtain sustained delivery. Then NP were entrapped within eudragit MP using the double emulsion solvent evaporation process. NP-in-MP were evaluated for particle size, entrapment efficiency, surface morphology, in-vitro drug release and in-vivo evaluation. Results The particle size and entrapment efficiency of the selected formulation was 12.4 +/- 3.1 mu m and 85.36 +/- 2.6%. The in vitro drug release profile verified that the selected formulation released (6.94 +/- 1.23%) less than 10% of the drug in an acidic environment, followed by continuous drug release (93.9 +/- 3.15%) in a colonic environment. The MPO level confirmed that the maximum recovery (i.e., decrease in MPO level) was observed for NP-in-MP (3.02 +/- 0.33, ***P < 0.001) followed by NP (6.2 +/- 0.51) compared with disease control. NP-in-MP substantially improved body weight, diarrhea score and rectal bleeding (***P < 0.001) which indicates mucosal healing and the mitigation of inflammation. The NP-in-MP significantly increased colon length (***P < 0.001) and reduced spleen weight (**P < 0.01) in comparison to disease control. NP-in-MP also showed improved histological results compared to those of the other treatment groups. Conclusion The current findings demonstrate the efficient development of NP-in-MP for enhancing the delivery of NP to the colonic region. The in-vitro data confirms that the NP-in-MP prevented burst release of NP and also targeted them to the colon along with sustained delivery of their payload. The in-vivo data confirms that the NP-in-MP are better in treating colitis than NP. Therefore, it was concluded that a hybrid NP-in-MP can be a potential alternative than other treatment carriers to treat inflammatory bowel disease and colorectal cancer. [GRAPHICS]
引用
收藏
页数:16
相关论文
共 50 条
  • [1] In-Vitro and In-Vivo Study of Indomethacin Loaded Gelatin Nanoparticles
    Kumar, Rakesh
    Nagarwal, Ramesh C.
    Dhanawat, Meenakshi
    Pandit, Jayanta Kumar
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2011, 7 (03) : 325 - 333
  • [2] MOTOR AND ELECTRICAL ACTIVITY IN HUMAN COLON IN-VITRO AND IN-VIVO
    VANASIN, B
    SCHUSTER, MM
    GASTROENTEROLOGY, 1971, 60 (04) : 728 - &
  • [3] In-vivo and In-vitro Investigations to Assess Traumatic Brain Injury
    Bhardwaj, Hemlata
    Vasudeva, Neeru
    Sharma, Sunil
    CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS, 2024, 23 (02) : 215 - 231
  • [4] IN-VIVO AND IN-VITRO TARGETING OF A MURINE SARCOMA BY GELATIN MICROPARTICLES LOADED WITH A GLYCAN (PS1)
    LOU, Y
    GROVES, MJ
    KLEGERMAN, ME
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 1994, 46 (11) : 863 - 866
  • [5] Novel protease inhibitor-loaded Nanoparticle-in-Microparticle Delivery System leads to a dramatic improvement of the oral pharmacokinetics in dogs
    Imperiale, Julieta C.
    Nejamkin, Pablo
    del Sole, Maria J.
    Lanusse, Carlos E.
    Sosnik, Alejandro
    BIOMATERIALS, 2015, 37 : 383 - 394
  • [6] Fabrication of glipizide loaded polymeric microparticles; in-vitro and in-vivo evaluation
    Rasheed, Qaiser
    Ahmad Khan, Kamran
    Razaque, Ghulam
    Ahmad, Ashfaq
    Nawaz, Asif
    Akhtar, Naheed
    Shah, Kifayat Ullah
    Niazi, Zahid Rasul
    Saeed, Muhammad Danish
    Alam, Anila
    PLOS ONE, 2025, 20 (01):
  • [7] Formulation, Characterization and In-Vitro and In-Vivo Evaluation of Capecitabine Loaded Niosomes
    Patel, Parth
    Barot, Tejas
    Kulkarni, Pratik
    CURRENT DRUG DELIVERY, 2020, 17 (03) : 257 - 268
  • [8] In-vitro and in-vivo validation of a new bonesubstitute for loaded orthopaedic applications
    Insley, GM
    Streicher, RM
    BIOCERAMICS, VOL 16, 2004, 254-2 : 993 - 996
  • [9] IN-VITRO AND IN-VIVO ANALYSIS OF COLON SPECIFICITY OF CALCIUM PECTINATE FORMULATIONS
    RUBINSTEIN, A
    RADAI, R
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 1995, 41 (05) : 291 - 295
  • [10] Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: In-vitro, ex-vivo and in-vivo evaluation
    Abdellatif, Menna M.
    Khalil, Islam A.
    Khalir, Mahmoud A. F.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2017, 527 (1-2) : 1 - 11