Forecasts for decaying dark matter from cross-correlation between line intensity mapping and large scale structures surveys

被引:0
|
作者
Wu, Jiali [1 ]
Xia, Jun-Qing [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Phys & Astron, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Inst Frontiers Astron & Astrophys, Beijing 100875, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL C | 2025年 / 85卷 / 04期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
STAR-FORMATION; COSMOLOGY; CONSTRAINTS; TELESCOPE; PRECISION; BIAS;
D O I
10.1140/epjc/s10052-025-14079-z
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Axion-like particles (ALPs) are compelling candidates for dark matter with a broad range of possible masses and coupling strengths. These particles decay into two photons, contributing to cosmic background radiation, which may correlate with large-scale structure (LSS). ALPs with a mass around 1 eV decay into monochromatic photons in the near-infrared spectrum, which can be detected by the upcoming SPHEREx mission using line intensity mapping (LIM) technology. To search for ALP signals in SPHEREx, we calculate the cross angular power spectrum between the intensity maps and LSS probes. We employ several LSS probes, including galaxy clustering and weak lensing surveys conducted by the China Space Station Telescope (CSST), as well as CMB lensing performed by CMB-S4. Using a Fisher analysis, we place constraints on the ALP parameters, with uncertainties of sigma(ma)=0.062\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (m_a) = 0.062$$\end{document} and sigma(ga gamma gamma)=0.19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (g_{a\gamma \gamma }) = 0.19$$\end{document} from the joint surveys. Our results suggest that the current bounds on ga gamma gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{a\gamma \gamma }$$\end{document} could be improved by an order of magnitude for ALPs in the mass range around 1 eV. The cross-correlation also allows for detection of star formation lines observed by SPHEREx, providing constraints on the amplitude and redshift exponent of their power spectrum with uncertainties of sigma(Aastro)=0.004\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (A_\text {astro}) = 0.004$$\end{document} and sigma(eta astro)=0.004\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (\eta _\text {astro}) = 0.004$$\end{document}, respectively. Additionally, we consider intrinsic alignment (IA) as a systematic effect in the weak lensing survey. The IA amplitude and exponent are well constrained by the LIM-WL cross-correlation, yielding results of sigma(AIA)=0.016\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (A_{\text {IA}}) = 0.016$$\end{document} and sigma(eta IA)=0.025\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (\eta _{\text {IA}}) = 0. 025$$\end{document}, which offer significant improvements over previous works related to CSST.
引用
收藏
页数:17
相关论文
共 32 条
  • [1] Searching for decaying and annihilating dark matter with line intensity mapping
    Creque-Sarbinowski, Cyril
    Kamionkowski, Marc
    PHYSICAL REVIEW D, 2018, 98 (06)
  • [2] Cross-correlation of diffuse synchrotron and large-scale structures
    Brown, Shea
    Farnsworth, Damon
    Rudnick, Lawrence
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 402 (01) : 2 - 6
  • [3] Cross-correlation Techniques to Mitigate the Interloper Contamination for Line Intensity Mapping Experiments
    Roy, Anirban
    Battaglia, Nicholas
    ASTROPHYSICAL JOURNAL, 2024, 969 (01):
  • [4] Cross-correlation Forecast of CSST Spectroscopic Galaxy and MeerKAT Neutral Hydrogen Intensity Mapping Surveys
    Yu-Er Jiang
    Yan Gong
    Meng Zhang
    Qi Xiong
    Xingchen Zhou
    Furen Deng
    Xuelei Chen
    Yin-Zhe Ma
    Bin Yue
    ResearchinAstronomyandAstrophysics, 2023, 23 (07) : 27 - 38
  • [5] Cross-correlation Forecast of CSST Spectroscopic Galaxy and MeerKAT Neutral Hydrogen Intensity Mapping Surveys
    Jiang, Yu-Er
    Gong, Yan
    Zhang, Meng
    Xiong, Qi
    Zhou, Xingchen
    Deng, Furen
    Chen, Xuelei
    Ma, Yinzhe
    Yue, Bin
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2023, 23 (07)
  • [6] Constraining decaying dark matter with BOSS data and the effective field theory of large-scale structures
    Simon, Theo
    Abellan, Guillermo
    Du, Peizhi Franco
    Poulin, Vivian
    Tsai, Yuhsin
    PHYSICAL REVIEW D, 2022, 106 (02)
  • [7] 21 cm intensity mapping cross-correlation with galaxy surveys: Current and forecasted cosmological parameters estimation for the SKAO
    Berti, Maria
    Spinelli, Marta
    Viel, Matteo
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 529 (04) : 4803 - 4817
  • [8] Cross-correlation between UHECR arrival distribution and large-scale structure
    Takami, Hajime
    Nishimichi, Takahiro
    Yahata, Kazuhiro
    Sato, Katsuhiko
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2009, (06):
  • [9] Cross-correlation of cosmic far-infrared background anisotropies with large scale structures
    Serra, P.
    Lagache, G.
    Dore, O.
    Pullen, A.
    White, M.
    ASTRONOMY & ASTROPHYSICS, 2014, 570
  • [10] The cross-correlation between galaxies and groups: probing the galaxy distribution in and around dark matter haloes
    Yang, XH
    Mo, HJ
    van den Bosch, FC
    Weinmann, SM
    Li, C
    Jing, YP
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 362 (02) : 711 - 726