A brief survey of deep learning methods for android Malware detection

被引:0
|
作者
Abdurraheem Joomye [1 ]
Mee Hong Ling [1 ]
Kok-Lim Alvin Yau [2 ]
机构
[1] Sunway University,Department of Smart Computing and Cyber Resilience
[2] Universiti Tunku Abdul Rahman (UTAR),Lee Kong Chian Faculty of Engineering and Science
关键词
Machine learning; Deep learning; Malware; Android; Security; Feature extraction; Static analysis; Dynamic analysis;
D O I
10.1007/s13198-024-02643-x
中图分类号
学科分类号
摘要
As the number of malware attacks continues to grow year by year with increasing complexity, Android devices have remained vulnerable with over 30 million mobile attacks detected in 2023. Thus, it has become more challenging to detect recent malware using traditional methods, such as signature-based and heuristic-based methods. Meanwhile, there has been a rise in the application and research of machine learning (ML) and deep learning (DL). As a result, researchers have proposed ML- and DL-based methods for Android malware detection. This paper reviews the methods proposed in the literature for Android malware detection using DL. It establishes a taxonomy highlighting and explores the feature types extracted through static and dynamic analyses and the DL models used in the literature. It also illustrates which feature types have been used with the different DL models. Finally, it discusses major challenges and potential future directions in the field of ML and DL methods for Android malware detection such as the need for updated datasets, more on-device evaluation of the methods and more approaches using dynamic/hybrid analyses.
引用
收藏
页码:711 / 733
页数:22
相关论文
共 50 条
  • [1] Android Malware Detection Using Deep Learning Methods
    Lukas, Robert
    Kolaczek, Grzegorz
    2021 IEEE 30TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE 2021), 2021, : 119 - 124
  • [2] Android Malware Detection Using Deep Learning
    Elayan, Omar N.
    Mustafa, Ahmad M.
    12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2021, 184 : 847 - 852
  • [3] A Survey of Android Malware Detection with Deep Neural Models
    Qiu, Junyang
    Zhang, Jun
    Luo, Wei
    Pan, Lei
    Nepal, Surya
    Xiang, Yang
    ACM COMPUTING SURVEYS, 2021, 53 (06)
  • [4] A Deep Learning Approach to Android Malware Feature Learning and Detection
    Su, Xin
    Zhang, Dafang
    Li, Wenjia
    Zhao, Kai
    2016 IEEE TRUSTCOM/BIGDATASE/ISPA, 2016, : 244 - 251
  • [5] Deep learning feature exploration for Android malware detection
    Zhang, Nan
    Tan, Yu-an
    Yang, Chen
    Li, Yuanzhang
    APPLIED SOFT COMPUTING, 2021, 102
  • [6] A Deep Learning Method for Obfuscated Android Malware Detection
    Dasiah, Nitin Benjamin
    Gain, Ritu
    Sabarisrinivas, V.
    Sitara, K.
    Communications in Computer and Information Science, 2024, 2128 CCIS : 149 - 164
  • [7] Review of Android Malware Detection Based on Deep Learning
    Wang, Zhiqiang
    Liu, Qian
    Chi, Yaping
    IEEE ACCESS, 2020, 8 : 181102 - 181126
  • [8] Feature Importance and Deep Learning for Android Malware Detection
    Talbi, A.
    Viens, A.
    Leroux, L-C
    Francois, M.
    Caillol, M.
    Nguyen, N.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2021, : 453 - 462
  • [9] Tuning Deep Learning Performance for Android Malware Detection
    Booz, Jarrett
    McGiff, Josh
    Hatcher, William G.
    Yu, Wei
    Nguyen, James
    Lu, Chao
    2018 19TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2018, : 140 - 145
  • [10] Applying deep learning techniques for Android malware detection
    Zegzhda, Peter
    Zegzhda, Dmitry
    Pavlenko, Evgeny
    Ignatev, Gleb
    11TH INTERNATIONAL CONFERENCE ON SECURITY OF INFORMATION AND NETWORKS (SIN 2018), 2018,