In this paper the approximation properties of the partial sums of trigonometric Fourier series for functions within the generalized variation classes BV(p(n)up arrow infinity,phi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BV(p(n)\uparrow \infty ,\varphi )$$\end{document} and B Lambda(p(n)up arrow infinity,phi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\Lambda (p(n)\uparrow \infty ,\varphi )$$\end{document} are investigated. The primary goal is to determine if these classes can provide better rates of uniform convergence compared to the classical Lebesgue estimate. The results show that under certain conditions, this classes offer improved convergence rates. Specifically, when the modulus of continuity omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} and the sequences p(n) and phi(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (n)$$\end{document} satisfy particular growth conditions, the uniform convergence rate can surpass the classical Lebesgue estimate. The paper also demonstrates that the conditions required for these improved estimates are not mutually exclusive, allowing a wide range of acceptable rates for omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}. Additionally, a function is constructed within the class H omega boolean AND B Lambda(p(n)up arrow infinity,phi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>\omega \cap B\Lambda (p(n) \uparrow \infty , \varphi )$$\end{document} (but not in BV(p(n)up arrow infinity,phi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BV(p(n) \uparrow \infty , \varphi )$$\end{document}) whose Fourier series converges uniformly, emphasizing the advantage of the B Lambda(p(n)up arrow infinity,phi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\Lambda (p(n) \uparrow \infty , \varphi )$$\end{document} class.